• Title/Summary/Keyword: 폐 Styrofoam

Search Result 5, Processing Time 0.021 seconds

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Vibration Analysis of Separation Screen in a Recycling Plant of Moisturized Construction Wastes (고함수율의 건설폐기물 폐 토속에 포함된 이물질 선별을 위한 분리스크린의 진동해석)

  • Moon, Byung-Young;Bae, Hyo-Dong;Kwag, Kwang-Hun;Bae, Kee-Sun;Song, Ha-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.526-533
    • /
    • 2008
  • In this study, theoretical super screen vibration analysis has been carried out to predict the dynamic characteristics of interactive waste particles. In order to approach these problems, it is necessary to have a fundamental understanding the screening process and the process of both the remaining and the passed material on a screen with several interacting screen planes based on Soldinger(1999) was discussed. Here, the vibrating screen is composed of three assemblies such as screen, wastes guide, and supported screen as shown in Fig. 1. This model is regarded vibrator as the system of screen fixed tilt plates. Then materials(or particles) of different size is to be separated by using the eccentric vibrator and classifying tilt plates. As well moisturized construction wastes is more efficient to separate than moisture-less it. In processing separate mechanism, the more materials is light, the more staying time is long. Thus much lighter construction wastes(wood, Styrofoam, etc) and heavier materials are separated by staying time delay in a super screen. The design results, separation screen were able to know that small and larger particles are conspicuous difference each motion character according to trajectory particles, and small particles raise the probability in classifying tilt plates.

Use of Respiratory Motion Reduction Device (RRD) in Treatment of Hepatoma (간암의 방사선치료 시 호흡운동 감소장치(respiratory motion reduction device, RRD)의 유용성에 관한 연구)

  • Lee Suk;Seong Jinsil;Kim Yong Bae;Cho Kwang Hwan;Kim Joo Ho;Jang Sae Kyung;Kwon Soo Il;Chu Sung Sil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.19 no.4
    • /
    • pp.319-326
    • /
    • 2001
  • Purpose : Planning target volume (PTV) for tumors in abdomen or thorax includes enough margin for breathing-related movement of tumor volumes during treatment. Depending on the location of the tumor, the magnitude of PTV margin extends from 10 mm to 30 mm, which increases substantial volume of the irradiated normal tissue hence, resulting in increase of normal tissue complication probability (NTCP). We developed a simple and handy method which can reduce PTV margins in patients with liver tumors, respiratory motion reduction device (RRD). Materials and methods : For 10 liver cancer patients, the data of internal organ motion were obtained by examining the diaphragm motion under fluoroscope. It was tested for both supine and prone position. A RRD was made using MeV-Green and Styrofoam panels and then applied to the patients. By analyzing the diaphragm movement from patients with RRD, the magnitude of PTV margin was determined and dose volume histogram (DVH) was computed using AcQ-Plan, a treatment planning software. Dose to normal tissue between patients with RRD and without RRD was analyzed by comparing the fraction of the normal liver receiving to $50\%$ of the isocenter dose. DVH and NTCP for normal liver and adjacent organs were also evaluated. Results : When patients breathed freely, average movement of diaphragm was $12{\pm}1.9\;mm$ in prone position in contrast to $16{\pm}1.9\;mm$ in supine position. In prone position, difference in diaphragm movement with and without RRD was $3{\pm}0.9\;mm$ and 12 mm, respectively, showing that PTV margins could be reduced to as much as 9 mm. With RRD, volume of the irradiated normal liver reduced up to $22.7\%$ in DVH analysis. Conclusion : Internal organ motion due to breathing can be reduced using RRD, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF