• 제목/요약/키워드: 폐 영역 분할

검색결과 60건 처리시간 0.025초

ITK를 이용한 폐혈관 분할 (Pulmonary vascular Segmentation Using Insight Toolkit(ITK))

  • 신민준;김도연
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.554-556
    • /
    • 2011
  • 각종 폐혈관 질환의 발생에 따른 정확하고 빠른 진단의 필요성이 강조되었다. 몇 가지 폐혈관 조영술의 제약사항의 존재로 흉부 CT에 대한 영상 처리의 필요성을 인지하였고 의료 영상처리의 다양성을 위해 ITK를 이용한 폐혈관 분할을 제안하였다. 본 논문은 명암 값을 기반한 방법으로 두 단계의 폐 영역 분할과 혈관 분할의 과정을 수행한다. 각 단계로 폐 영역 분할은 영상 향상, 문턱치 값, 관심영역 잘라내기로 결과 영상을 획득하고 폐 혈관 분할은 획득된 폐 영역에 영역 채우기를 적용하여 얻는다. 분할된 폐혈관 영상을 바탕으로 3차원 시각화 영상을 획득하여 폐혈관에 대한 다양한 관점의 분석 및 진단이 가능할 것으로 판단된다.

  • PDF

EBT 의료 영상에서 폐 영역의 추출 및 폐엽의 분할 (Segmentation of lung and lung lobes in EBT medical images)

  • 김영희;이성기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (하)
    • /
    • pp.895-898
    • /
    • 2000
  • 의료 영상에서 폐 영역의 정확한 추출과 폐엽의 분할은 폐 기능의 측정 및 폐 질환의 진단을 위하여 매우 중요하다. 본 논문에서는 EBT 흉부 영상에서 자동으로 폐 영역을 추출하고 폐 영역을 폐엽 단위로 분할하는 방법을 제안한다. 본 논문에서는 히스토그램 분석과 형태학적 연산자를 이용하여 폐 영역을 추출하고 adaptive filter를 이용한 에지 연산과 폐엽 경계(pulmonary fissure)에 대한 의학적 지식을 바탕으로 폐엽을 분할하였다. 본 방법을 여러 종류의 EBT 폐 영상에 적용하여 실험한 결과 95%이상의 정확도를 보였다.

  • PDF

EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할 (Segmentation of Lung and Lung Lobes in EBT Medical Images)

  • 김영희;이성기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.276-292
    • /
    • 2004
  • 본 논문에서는 폐 질환 진단에 필요한 EBT(Electron Beam Tomography) 흉부 영상에서 폐 영역을 추출하고, 추출된 폐 영역에서 폐엽의 경계(pulmonary fissure)를 찾아 폐엽(lobe) 단위로 분할하는 방법을 제안하였다. EBT 흉부 영상을 분석하여 히스토그램을 기반으로 하는 임계치 방법과, 수학적형태학을 적용하여 폐 영역을 추출하였고 본 논문에서 제안한 adaptive filter scale을 사용한 에지 연산자와 폐엽 경계(pulmonary fissure)에 대한 해부학적 지식을 바탕으로 폐 영역을 폐엽 단위로 분할하였다. 본 논문에서 제안한 방법을 총 102개의 영상에 대해 실험한 결과는 폐 영역 추출에서 95% 이상의 정확도를 보여주었고 폐엽 경계선 추출에서 5 픽셀 이하의 거리오차를 나타내었다.

워터쉐드 변형을 이용한 폐 영상 분할 (Lung image segmentation by watershed transform)

  • 김희숙;탁정남;이귀상;김수형;홍성훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.763-765
    • /
    • 2004
  • 현재 의료 영상을 이용한 신속하고 정확한 진단과 치료를 위하여 각 기관별로 영상을 분할하는 방식이 기본적으로 사용되고 있다. 본 논문에서는 워터쉐드(Watershed) 알고리즘을 이용하여 해부학적 기관 중 폐 영역을 분할하는 방식을 제안한다. 초기에 소벨 에지 마스크(Sobel Edge Mask)를 이용하여 윤곽선을 강조하여 워터쉐드 알고리즘을 적용하였을 경우 과다 분할되는 문제점이 발생한다. 이를 해결하기 위하여 제거(Opening) 연산과 채움(Closing) 연산을 이용하여 마커(Marker) 정보를 추출하여 워터쉐드 알고리즘을 재적용하여 폐 영역 이미지를 분할하였다. 본 논문에서 제안한 마커 정보를 이용한 워터쉐드 재적용 방식은 폐 영역 효율적이고 정확하게 추출한다.

  • PDF

흉부 CT 영상의 밝기값 정보를 사용한 폐구조물 자동 분할 (Automatic Segmentation of Pulmonary Structures using Gray-level Information of Chest CT Images)

  • 임예니;홍헬렌
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권11호
    • /
    • pp.942-952
    • /
    • 2006
  • 본 논문에서는 흉부 CT 영상의 밝기값 정보를 사용하여 폐 구조물을 자동 분할하기 위한 방법을 제안한다. 본 제안방법은 다음과 같은 다섯 단계로 구성된다. 첫 번째, 영상의 밝기값 차이를 이용하여 폐 구조물을 분할하기 위해 최적 임계값 기법을 사용하여 임계값을 계산한다. 두 번째, 흉부 CT 영상에 2차원 영역성장법의 역 연산을 사용하여 배경으로부터 흉부를, 흉부로부터 기관지 및 폐를 단계적으로 분할한다. 이 때, 밝기값이 비슷한 다른 영역들을 3차원 연결화소군 레이블링을 통해 제거한다. 세 번째, 흉부 CT 영상에 3차원 분기 기반 영역성장법을 적용하여 기관과 좌우 기관지를 분할한다. 네 번째, 기관지 및 폐에서 기관지를 영상 감산함으로써 정확한 폐 영역을 얻는다. 마지막으로, 히스토그램 분석을 통해 임계값을 계산하고 기관지 및 폐에 밝기값 기반 임계값 기법을 적용하여 폐혈관을 분할한다. 제안방법의 정확성을 검증하기 위해 폐, 기관지, 폐혈관의 분할 결과에 대해 육안평가를 수행한다. 제안한 3차원 분기 기반 영역성장법을 통한 기관지 분할 결과를 평가하기 위해 기존 영역성장법으로 분할한 결과와 비교한다. 실험 결과는 제안 분할 방법이 폐, 기관지, 폐혈관을 자동으로 정확하게 추출함을 보여준다.

하이브리드 접근 기법을 사용한 자동 폐 분할 (Automatic Lung Segmentation using Hybrid Approach)

  • 임예니;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.625-635
    • /
    • 2005
  • 본 논문에서는 흥부 CT 영상에서 폐 부위를 효율적으로 자동 분할하기 위한 하이브리드 접근기법을 제안한다. 본 제안방법은 다음과 같은 세 단계로 구성된다 첫 번째, 2, 3차원 자동 씨앗 영역성장법과 저해상도 연결요소 레이블링을 통하여 폐와 기관지를 분할한다. 두 번째, 2차원 형태학적 연산을 반복 적용하여 폐와 기관지를 분리한 후 저해상도 연결요소 레이블링을 이용하여 폐만 분할한다. 세 번째, 영상차감 기법을 사용한 폐 영역 보정을 통해 보다 정확한 폐 영역을 얻는다. 실험에서는 5명의 환자로부터 얻은 10개의 흉부 CT 영상을 사용하여 제안방법의 정확성과 효율성을 평가한다. 제안한 자동 분할 기법의 적용 결과를 전문가에 의한 수동 분할 결과와 비교함으로써 정확성을 평가하고, 수행시간과 메모리 사용량을 분석하여 제안방법의 효율성을 평가한다. 제안한 저해상도 연결요소 레이블링을 사용했을 때 수행시간은 평균 31.4초, 최대 메모리 사용량은 평균 196.75MB가 단축된다. 본 제안방법은 혈관에 생기는 빈 공간을 막아주는 추가작업 없이 효율적으로 자동 폐 분할을 수행한다.

영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법 (Pediatric RDS classification method employing segmentation-based deep learning network)

  • 김지영;강재하;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

CT 영상내의 폐 결절과 색전 검출을 위한 폐혈관 자동 추출 (Automatic Extraction of Pulmonary Vessels to Detect the Pulmonary Nodule and Embolism in CT Image)

  • 박찬;유홍연;홍성훈;김수형;이귀상
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.699-702
    • /
    • 2004
  • 단층촬영에 의해 획득된 흉부영상의 폐 영역은 기관지, 폐동맥, 폐정맥으로 구성된 복잡한 형태를 가지고 있다. 또한 이들 조직과 폐 영역 내에 존재하는 악성 종양과 같은 질병들 사이의 공간정보의 유사성으로 인해 방사선 전문의조차도 질병을 간단히 구분 해내는데 많은 어려움이 따른다. 따라서 본 논문에서는 이러한 유사한 공간정보를 갖는 폐 영역을 수리형태학 필터인 모폴로지(morphology)와 국부적인 워터쉐드(watershed) 알고리즘을 이용하여 분할하고, 분할된 폐 영역으로부터 색전 또는 종양 등의 결절(nodule)의 정보를 가지고 있는 혈관들을 추출하는 효과적인 알고리즘을 제안한다.

  • PDF

형태학 정보와 개선된 롤링 볼 알고리즘을 이용한 폐, 기관지 및 폐혈관 자동 분할 (Automatic Segmentation of Lung, Airway and Pulmonary Vessels using Morphology Information and Advanced Rolling Ball Algorithm)

  • 조준호
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.173-181
    • /
    • 2014
  • 본 논문은 흉부 CT에서 폐, 기관지 및 폐혈관을 자동으로 분할 할 수 있는 알고리즘을 제안 하였다. 제안된 방법은 3단계로 진행된다. 첫째는 최적 임계값과 3차원 레이블링을 통한 영역성장법으로 폐 및 기관지를 분할한다. 둘째는 기관지의 형태학적 정보를 활용하여 기관지의 첫 번째 분기점(용골)까지는 차감연산으로, 이후부터는 가변적 임계값 기법을 적용하여 기관지를 분할한다. 셋째는 폐에 대한 복원 과정으로 좌/우측 폐를 분리하고, 개선된 롤링 볼 알고리즘을 적용하여 폐 외곽의 이상 유무를 확인하며, 이상이 발견되면 그 부분을 제거하고, 2차 다항식 형태로 폐 외곽을 연결시킴으로서 정상적인 폐로 복원한다. 마지막으로 폐혈관은 임계 값 기법의 3 차원 레이블링과 3 차원 영역성장법을 적용하여 분할하였다. 시뮬레이션 결과 폐 주변조직의 손실 없이 정확하게 분할됨을 확인 할 수 있었다.

흉부 CT 영상에서 개선된 폐 및 폐혈관 분할과 괴사 세포 비율의 수치적 알고리즘 (Improved Lung and Pulmonary Vessels Segmentation and Numerical Algorithms of Necrosis Cell Ratio in Lung CT Image)

  • 조준호;문성룡
    • 디지털융복합연구
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 2018
  • 흉부 CT 영상에서 폐 질환의 진단을 위해서 폐 분할, 폐혈관 분할과 폐 질환 부위에 대한 괴사 세포 비율의 수치적 계산을 제안 하였다. 첫 번째 단계는 흉부 CT 영상에서 3차원 레이블링 기법과 3차원 영역 성장법을 적용하여 폐와 기관지를 분리한다. 두 번째 단계는 폐혈관 분할은 1차 다항식 회귀(Polynomial Regression)를 사용한 변화율을 적용하여 분할한 다음, 잡음 제거를 실시하여 최종의 폐혈관을 분할한다. 세 번째 단계는 2단계 이미지 에서 질환 예상 인자를 발견하고, 괴사 세포의 비율을 계산하는 것이다. 질환 예상인자는 폐에 대해서 3차원 레이블링 기법을 적용하였고, 각 레이블 중심 값을 관측하여 변화가 없는 레이블을 찾는다. 이렇게 찾은 질환 예상 인자는 조영제 투입 전/후 영상을 정합한 뒤, 면적을 비교하면 폐의 괴사 세포 비율을 계산할 수 있다.