• Title/Summary/Keyword: 폐 영역 분할

Search Result 60, Processing Time 0.031 seconds

Pulmonary vascular Segmentation Using Insight Toolkit(ITK) (ITK를 이용한 폐혈관 분할)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.554-556
    • /
    • 2011
  • The occurrence of various vascular diseases due to the need for accurate and rapid diagnosis was emphasized. Several limitations to the presence of pulmonary vascular angiography for chest CT imaging was aware of the need for diversity in medical image processing with Insight Toolkit(ITK) suggested pulmonary vascular division. In this paper, by contrast, based on the value of a two-step partitioning of the lungs and blood vessels to perform the process of splitting. Lung area segmentation of each stage image enhancement, threshold value, resulting in areas of interest cut image acquisition and acquired pulmonary vascular division in lung area obtained by applying the fill area. Partitioned on the basis of pulmonary vascular imaging to obtain three-dimensional visualization image of the pulmonary vascular analysis and diagnosis of a variety of perspectives are considered possible.

  • PDF

Segmentation of lung and lung lobes in EBT medical images (EBT 의료 영상에서 폐 영역의 추출 및 폐엽의 분할)

  • Kim, Young-Hee;Lee, Sung-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.895-898
    • /
    • 2000
  • 의료 영상에서 폐 영역의 정확한 추출과 폐엽의 분할은 폐 기능의 측정 및 폐 질환의 진단을 위하여 매우 중요하다. 본 논문에서는 EBT 흉부 영상에서 자동으로 폐 영역을 추출하고 폐 영역을 폐엽 단위로 분할하는 방법을 제안한다. 본 논문에서는 히스토그램 분석과 형태학적 연산자를 이용하여 폐 영역을 추출하고 adaptive filter를 이용한 에지 연산과 폐엽 경계(pulmonary fissure)에 대한 의학적 지식을 바탕으로 폐엽을 분할하였다. 본 방법을 여러 종류의 EBT 폐 영상에 적용하여 실험한 결과 95%이상의 정확도를 보였다.

  • PDF

Segmentation of Lung and Lung Lobes in EBT Medical Images (EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할)

  • 김영희;이성기
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.276-292
    • /
    • 2004
  • In this paper. we present methods that extract lung regions from chest EBT(electron beam tomography) images then segment the extracted lung region into lung lobes. We use histogram based thresholding and mathematical morphology for extracting lung regions. For detecting pulmonary fissures, we use edge detector and knowledge-based search method. We suggest this edge detector, which uses adaptive filter scale, to work very well for real edge and insensitive for edge by noise. Our experiments showed about 95% accuracy or higher in extracting lung regions and about 5 pixel distance error in detecting pulmonary fissures.

Lung image segmentation by watershed transform (워터쉐드 변형을 이용한 폐 영상 분할)

  • 김희숙;탁정남;이귀상;김수형;홍성훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.763-765
    • /
    • 2004
  • 현재 의료 영상을 이용한 신속하고 정확한 진단과 치료를 위하여 각 기관별로 영상을 분할하는 방식이 기본적으로 사용되고 있다. 본 논문에서는 워터쉐드(Watershed) 알고리즘을 이용하여 해부학적 기관 중 폐 영역을 분할하는 방식을 제안한다. 초기에 소벨 에지 마스크(Sobel Edge Mask)를 이용하여 윤곽선을 강조하여 워터쉐드 알고리즘을 적용하였을 경우 과다 분할되는 문제점이 발생한다. 이를 해결하기 위하여 제거(Opening) 연산과 채움(Closing) 연산을 이용하여 마커(Marker) 정보를 추출하여 워터쉐드 알고리즘을 재적용하여 폐 영역 이미지를 분할하였다. 본 논문에서 제안한 마커 정보를 이용한 워터쉐드 재적용 방식은 폐 영역 효율적이고 정확하게 추출한다.

  • PDF

Automatic Segmentation of Pulmonary Structures using Gray-level Information of Chest CT Images (흉부 CT 영상의 밝기값 정보를 사용한 폐구조물 자동 분할)

  • Yim, Ye-Ny;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.942-952
    • /
    • 2006
  • We propose an automatic segmentation method for identifying pulmonary structures using gray-level information of chest CT images. Our method consists of following five steps. First, to segment pulmonary structures based on the difference of gray-level value, we select the threshold using optimal thresholding. Second, we separate the thorax from the background air and then the lungs and airways from the thorax by applying the inverse operation of 2D region growing in chest CT images. To eliminate non-pulmonary structures which has similar intensities with the lungs, we use 3D connected component labeling. Third, we segment the trachea and left and right mainstem bronchi using 3D branch-based region growing in chest CT images. Fourth, we can obtain accurate lung boundaries by subtracting the result of third step from the result of second step. Finally, we select the threshold in accordance with histogram analysis and then segment radio-dense pulmonary vessels by applying gray-level thresholding to the result of the second step. To evaluate the accuracy of proposed method, we make a visual inspection of segmentation result of lungs, airways and pulmonary vessels. We compare the result of the conventional region growing with the result of proposed 3D branch-based region growing. Experimental results show that our proposed method extracts lung boundaries, airways, and pulmonary vessels automatically and accurately.

Automatic Lung Segmentation using Hybrid Approach (하이브리드 접근 기법을 사용한 자동 폐 분할)

  • Yim, Yeny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.625-635
    • /
    • 2005
  • In this paper, we propose a hybrid approach for segmenting the lungs efficiently and automatically in chest CT images. The proposed method consists of the following three steps. first, lungs and airways are extracted by two- and three-dimensional automatic seeded region growing and connected component labeling in low-resolution. Second, trachea and large airways are delineated from the lungs by two-dimensional morphological operations, and the left and right lungs are identified by connected component labeling in low-resolution. Third, smooth and accurate lung region borders are obtained by refinement based on image subtraction. In experiments, we evaluate our method in aspects of accuracy and efficiency using 10 chest CT images obtained from 5 patients. To evaluate the accuracy, we Present results comparing our automatic method to manually traced borders from radiologists. Experimental results show that proposed method which use connected component labeling in low-resolution reduce processing time by 31.4 seconds and maximum memory usage by 196.75 MB on average. Our method extracts lung surfaces efficiently and automatically without additional processing like hole-filling.

Pediatric RDS classification method employing segmentation-based deep learning network (영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법)

  • Kim, Jiyeong;Kang, Jaeha;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

Automatic Extraction of Pulmonary Vessels to Detect the Pulmonary Nodule and Embolism in CT Image (CT 영상내의 폐 결절과 색전 검출을 위한 폐혈관 자동 추출)

  • Park, Chan;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.699-702
    • /
    • 2004
  • 단층촬영에 의해 획득된 흉부영상의 폐 영역은 기관지, 폐동맥, 폐정맥으로 구성된 복잡한 형태를 가지고 있다. 또한 이들 조직과 폐 영역 내에 존재하는 악성 종양과 같은 질병들 사이의 공간정보의 유사성으로 인해 방사선 전문의조차도 질병을 간단히 구분 해내는데 많은 어려움이 따른다. 따라서 본 논문에서는 이러한 유사한 공간정보를 갖는 폐 영역을 수리형태학 필터인 모폴로지(morphology)와 국부적인 워터쉐드(watershed) 알고리즘을 이용하여 분할하고, 분할된 폐 영역으로부터 색전 또는 종양 등의 결절(nodule)의 정보를 가지고 있는 혈관들을 추출하는 효과적인 알고리즘을 제안한다.

  • PDF

Automatic Segmentation of Lung, Airway and Pulmonary Vessels using Morphology Information and Advanced Rolling Ball Algorithm (형태학 정보와 개선된 롤링 볼 알고리즘을 이용한 폐, 기관지 및 폐혈관 자동 분할)

  • Cho, Joon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • In this paper, the algorithm that can automatically segment the lung, the airway and the pulmonary vessels in a chest CT was proposed. The proposed method is progressed in three steps. In the first step, the lung and the airway are segmented by the region growing law through the optimal threshold and three-dimensional labeling. In the second, from the start point to the first carina of the airway is segmented by the deduction operation, and the next airway of the bifurcations are segmented by applying a variable threshold technique. In the third step, the left/right lungs are divided by the restoration process for the lung, and the outside of lungs for abnormal is checked by applying the advanced rolling ball algorithm, and if abnormal is found, that part is removed, and it is restored to the normal lungs by connecting the outside of the lung in the form of second-order polynomial. Finally, pulmonary vessels are segmented by applying the three-dimensional connected component labeling method and three-dimensional region growing method. As the results of simulation, it could be confirmed that the pulmonary vascular is accurately divided without loss of tissue around lung.

Improved Lung and Pulmonary Vessels Segmentation and Numerical Algorithms of Necrosis Cell Ratio in Lung CT Image (흉부 CT 영상에서 개선된 폐 및 폐혈관 분할과 괴사 세포 비율의 수치적 알고리즘)

  • Cho, Joon-Ho;Moon, Sung-Ryong
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • We proposed a numerical calculation of the proportion of necrotic cells in pulmonary segmentation, pulmonary vessel segmentation lung disease site for diagnosis of lung disease from chest CT images. The first step is to separate the lungs and bronchi by applying a three-dimensional labeling technique from a chest CT image and a three-dimensional region growing method. The second step is to divide the pulmonary vessels by applying the rate of change using the first order polynomial regression, perform noise reduction, and divide the final pulmonary vessels. The third step is to find a disease prediction factor in a two-step image and calculate the proportion of necrotic cells.