• Title/Summary/Keyword: 폐 아스콘 골재

Search Result 3, Processing Time 0.018 seconds

Evaluation of Impurity Content Criteria of Recycled Aggregate for Lean Concrete Base (빈배합 콘크리트 기층용 순환골재의 이물질 품질기준 적정성 연구)

  • Kim, Nam-Ho;Yang, Seung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • A recent shortage in Korean aggregate market leads a social demand to utilize recycled aggregate to more advanced level, such as the use in concrete structures or paving materials for surface and base layers. Government announced a recycled aggregate guideline in 2009 to provide an institutional framework for recycled aggregate in such an up-scaled use. The use of recycled aggregate in such use; however, is very minimal. This paper evaluates the validity of the impurity content criteria of recycled aggregate for lean concrete base through a series of material tests. The analysis results shows that reclaimed asphalt pavement (RAP) in recycled aggregate not only influence a strength lean concrete adversely, but also influence negatively on an absorption and abrasion characteristics of aggregate system significantly that made those two indices lower. Since absorption and abrasion characteristics are very important indices for recycled aggregate quality, RAP in recycled aggregate could significantly mislead the recycled aggregate qualification. This paper provides a suggestion to resolve these problems.

Development of Optimal Binder for Recycling Cold Asphalt Mixture (재활용 상온아스콘 혼합물의 최적 결합재 개발)

  • Hong, In Kwon;Jeon, Gil Song;Yang, Chang Bae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • This study was carried out to design the optimum mixing ratio of aggregate, cyclic aggregate, and binder (moisture, emulsified asphalt, and emulsion type additives) and produce recycling cold asphalt paving mixture satisfying site work standard. The cyclic aggregate satisfying KS F 2572 was collected from waste asphalt by adequate processing. As the moisture content increased, the shearing strength was decreased. The maximum marshall stability was shown at the 3.0 wt% moisture content. So the optimum moisture content was 3.0 wt%. The marshall stability and flow value with the amount of emulsified asphalt was satisfied in the range of 0.5~2.5 wt%, and the porosity was satisfied in the range of 0.7~2.5 wt%. So the optimum amount of emulsified asphalt was 1.6 wt%. The optimum amount of emulsion type additive was 0.1 wt% in the light of marshall stability and degree of saturation of recycling cold asphalt mixture.

A Study on the Economic Estimation of the Recycling of Construction Waste (건설폐기물(建設廢棄物) 재활용(再活用) 과정에 대한 경제성(經濟性) 평가(評價) 연구(硏究))

  • Park, Won-Woo;Lee, Sang-Duck;Min, Bo-Ra;Park, Lee-Ran;Gim, Ui-Gyeong;Baek, Mi-Hwa;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Amount of waste is always generated in industrialization process and it is gradually increasing. Domestic and industrial waste in 2003 increased by 9.5 percent than that of the last year(2002), whereas the amount of construction waste increased largely by 21 percent. Recently construction waste of total waste accounts for nearly 50 percent, waste concrete and Ascon from the construction waste takes up to 73 percent. Furthermore, amount of natural materials are gradually decreasing, that is, they are not sufficient any more. Owing to these reasons, the importance of recycling construction waste has been emphasized. The use of recycling aggregate makes the disposal of construction waste easier as well as protects environment from gathering raw aggregate. Also, it has the alternative effect economizing the insufficient new natural aggregate. This study employs the cost-benefit model to analyze the economic effect of construction waste recycling of Ascon which takes relatively high part of the total waste. The cost-comparison between raw aggregate and recycling aggregate were analyzed. With the model, the economic effect of Ascon recycling in 2003 and 2004 in capital area of Korea were analysed. Cost comparison between raw aggregate and recycling aggregate were also carried out. The result showed that the economic effect of Ascon recycling increased to 0.0808 for 2004 as compared 0.0694 for 2003. We could not conclude using above data, but this result shows that the economic benefit of Ascon recycling of construction waste has increased.