• Title/Summary/Keyword: 폐 슬러지

Search Result 159, Processing Time 0.031 seconds

Fabrication of the Cement for the Solidification of the Toxic Waste using Waste Concrete Powder (폐콘크리트 미분말을 이용한 유해 폐기물 고화용 시멘트의 제조)

  • Kim, In-Seob;Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Jong-Gyu;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1133-1137
    • /
    • 2002
  • The cement for solidification of the toxic waste was fabricated using a mixture of the waste concrete powder and blast furnace slag in the ratio of 1:1 and its hydrate morphology and compressive strength of the sample were evaluated in order to apply to the solidification of the COREX sludge. The X-ray diffraction analysis of the sample which prepared by the addition of 10% Portland cement and hemihydrate showed the presence of $Ca(OH)_2$, ettringite, gel-phase and C-S-H hydrate. Compressive strength of the sample exhibited enough high to use as a solidification cement. The strength of the sample was over 140 kgf/$m^2$ in 7 days in case of solidification of the COREX sludge and the sample possess sufficient morphology for the solidification and stabilization of the waste sludge.

A Feasibility Study on the Utilization of by-Product Sludge Generated from Waste Concrete Recycling Process (폐 콘크리트 재생순환자원 부산물 슬러지의 활용 기초연구)

  • Shin, Hee-young;Ji, Sangwoo;Woo, Jeong-youn;Ahn, Gi-oh;An, Sang-ho
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.29-36
    • /
    • 2016
  • The characteristics analysis and pH neutralization test were carried out to use of slurry generated from recycling processes of construction wastes. D (5.0) of raw sludge was $42.4{\mu}m$ and over 60 % of sludge distribute under 45 um (-325 mesh). Muscovite and carbonate minerals were main minerals of fine particles, and the portion of carbonate minerals increased as particle size decreased. Although the more heavy metals were observed in the finer particle size, the contents was found to be less than Korean contaminated soil regulation (area 2). The effects of flocculants addition for accelerating solid-liquid separation were negligible because the slurry already contains excess of coagulant added in the waste concrete recycling process. It was difficult to neutralize the sludge supernatant due to high pH (about 12) by adding acids, but the introduction of $CO_2$ decreased the pH to 8.5, The precipitate recovered during $CO_2$ introduction was determined to be $CaCO_3$ with XRD, and it indicates that high pure $CaCO_3$ could be obtained during the process.

폐 석탄광산 배수처리 시 발생되는 슬러지를 이용한 오염토양 중금속 고형화 처리 기술 연구

  • Choe, Myeong-Chan;Im, Jeong-Hyeon;Son, Yeong-Gyu;Jang, Min;Sim, Yeon-Sik;Kim, Ji-Hyeong
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.472-475
    • /
    • 2008
  • 중금속으로 오염된 토양을 안정화하고자 석탄 광산 배수 처리 시 발생되는 슬러지를 이용하여 중금속 용출 실험을 실시하였다. 용출 실험을 위하여 슬러지를 무게비율로 0%, 1%, 3%를 완전혼합하고, 3%슬러지를 오염토양과 층을 이루어 용출 실험을 실시하였다. 유입 pH를 5.5-6.2와 3-4로 조절하여 용출실험을 실시한 결과 Cu, Zn, Pb, Cr의 용출 농토는 3% M<3% S<1% M<0% 순으로 나타났다. 오염토양 무게 비율로 3% 슬러지를 완전혼합 시 중금속 용출 실험 결과 20년 기준 안정성을 확보할 수 있었다.

  • PDF

Adsorption Characteristics of Heavy Metal and VOCs of Pyrolysis Char from Organic Waste Sludge (유기성 폐슬러지의 열분해 차르에 대한 중금속 및 VOCs 흡착특성)

  • Park, Sang-Sook;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.130-137
    • /
    • 2005
  • This research programme include investigation of the adsorption behavior of heavy metals and VOCs by Pyrolysis char for using landfill cover material. The volatile potions in the sludge gasified during the pyrolysis period and gave birth to porosity throughout the matrix. The result of the ad/desorption experiment of nitrogen to find out the formation of some pore by the gasification of the volatile matter, we can certify that the pyrolysis char($14.56\;m^2/g$) has increased twice more than the organic wasted sludge($6.68\;m^2/g$) in specific surface area. The pyrolysis char has the adsorption characteristic of medium type of Type II and V in BDDT classification, and showed a little micro pore. In the adsorption experiment of ethylbenzene and toluene, as a result of applying the Freundlich adsorption isotherms, the pyrolysis char was higher in the adsorptivity of ethylbenzene and toluene than the granite and the organic wasted sludge. The results of the heavy metal adsorption test for the char indicated that it had some ability of adsorption. It is suggest that pyrolysis char has some advantages for utilizing as landfill covers because the pyrolysis char can adsorb/absorb hazardous substances from the landfill sites and inhibit the ground water and soil contamination.

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

A Study on Organic Sludge Application and Duration Estimate for Treating Natural Purification of Acidic Mine Drainage (폐탄광폐수의 자연정화처리를 위한 유기성슬러지 적용 및 지속시간예측에 관한 연구)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.475-484
    • /
    • 2000
  • The purpose of this study was to develop model for estimating biodegrability of organic sludge (sewage and papermill) in various environmental conditions. to assume degradable degree with operating time of SRB reactor. and evaluate duratior of organic sludge as carbon source. Average TCOD was 28.7~63.2mg/L in effluent. organic sludge did not much supply carbon source for experimental period. But in point of durability. it seemed that organic sludge was efficient because it was not consumed by degradation of much organic matter within short period. With increasing $SO_4{^{2-}}$ reduction rate. Pb and Fe was removed 77~82% and 33~59%. respectively. Because Al was precipitated as a hydroxide. its removal rate wa,. about $54{\pm}2%$ in R-l~R-3 maintaining low pH but about 78% in R-4 maintaining high pH. Because Mn was large in solubility. it showed to be much lower than other heavy metals. Considering supportable capacity or durability of orgainc matter for initial SRB mixing ratio of sewage/papermill 0.5 was regarded as appropriate substituting material and at this time. it estimated that carbon source continued about 3.08 year but safety factor must apply to be thought over. because various factors had an effect on degradation of organic sludge.

  • PDF

Implementation of a silicon sludge recycling system for solar cell using multiple centrifuge (다중 원심분리법을 이용한 태양전지용 실리콘 폐 슬러지 재생 시스템 구현)

  • Kim, Ho-Woon;Choi, Byung-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper explained about the sludge recycling system which retrieved the silicon and abrasive from solar cell wafer slicing. The basic process of the recycling system was multiple centrifuge and secondary processes of ultra sonic agitation, addition of alcohol-water solution and heating sludge was added for raising separation efficiency. The recycling rate was about 96% and 94% for 2N, 4N silicon respectively. The SiC abrasive recycling rate was about 80%. To retrieve the high purity of 4N silicon, the heat process in vacuum furnace was added to remove remaining impurity components.