• Title/Summary/Keyword: 폐혈관 손상

Search Result 109, Processing Time 0.028 seconds

$H_2O_2$ Induces Apoptosis in Calf Pulmonary Artery Endothelial Cells (폐동맥내피 세포에서 $H_2O_2$에 의한 세포자사)

  • 김범식;정주호
    • Journal of Chest Surgery
    • /
    • v.33 no.12
    • /
    • pp.935-940
    • /
    • 2000
  • 배경: 폐혈관 손상에 관한 기전은 여러 보고에도 불구하고 자세히 밝혀지지는 않았다. 최근 산화성 스트레스 질환에 관여하는 과산화 수소($H_2O$$_2$) 등의 활성 산소족(reactive oxygen species)은 세포손상과 세포자사(apoptosis)에 중요한 역할을 한다고 알려져 있다. 본 연구에서는 $H_2O$$_2$에 의하여 유발된 산화성 스트레스가, 폐혈관 손상 기전의 하나로 추측되고 있는 세포자사를 야기하는지를 연구하였다. 대상 및 방법: 소의 폐동맥에서 유래된 calf pupmonary artery endothelial cell line(CPAE)를 이용하였다. $H_2O$$_2$에 의한 세포 독성을 측정하기 위하여, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide(MTT) assay를 시행하였다. $H_2O$$_2$에 의한 세포의 형태학적 변화는 도립 현미경으로 분석하였다. 세포자사를 확인하기 위하여 terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay와 4,6-diamidino-2-phenylindole(DAPI) staining 방법 및 flow cytometry 분석를 시행하였다. 결과: $H_2O$$_2$에 의한 세포 생존율은, 대조군(100%)과 비교하여 3시간 실험군에서 10$\mu$M에서 약 70%, 50 $\mu$M에서 약 33%, 100 $\mu$M에서 약 26%, 500 $\mu$M에서 약 28%이였다. $H_2O$$_2$투여시 세포돌기 감소, 세포 축소, 세포질 응축과 불규칙한 형태 등의 세포자사에 나타나는 형태학적 변화를 나타내었다. TUNEL assay와 DAPI staining에서도 세포자사에 특징적으로 나타나는 핵응축과 핵분절 등의 소견을 나타내었다. Flow cytometry 분석 시에도 $H_2O$$_2$투여시 sub G$_1$분절의 증가와 G$_1$분절의 감소 등의 세포자사 양상이 확인되었다. 결론: 형태학적 분석과 생화학적 분석을 통하여, $H_2O$$_2$는 CPAE에서 세포자사를 야기함을 확인하였다. 이러한 결과는 폐혈관 손상의 기전에 $H_2O$$_2$에 의한 세포자사가 부분적으로 관여할 가능성을 제시한다.

  • PDF

The Effect of Addition of Cyclic Adenosine Monophosphate and Nitric Oxide in Low Potassium Dextran Solution for Lung Preservation in an Isolated Rabbit Lung Perfusion Model. (토끼 폐장 분리관류 모형에서 Low Potassium Dextran 용액에 Cyclic Adenosine Monophosphate와 Nitric Oxide의 첨가가 폐보존에 미치는 영향)

  • 조덕곤;조규도;김영두;곽문섭
    • Journal of Chest Surgery
    • /
    • v.34 no.3
    • /
    • pp.212-223
    • /
    • 2001
  • 배경: 이식폐의 보존 및 재관류 동안 cyclic adenosine monophosphate(cAMP)와 nitric oxide(NO)는 폐혈관 내 순환조절을 유지하는데 있어 중심적인 역할을 한다. 그러나 내치세포내의 cAMP와 NO 모두 허혈-재관류 과정 동안에 현저하게 감소한다. 이에 저자는 low potassium dextran(LPD) 폐조본액에 cAMP의 유사체인 dibutyry1 cAMP(db-cAMP)와 NO의 공여물질인 nitroglycerin(NTG)을 첨가하여 이들의 폐보존 효과를 알아보고, 이들은 첨가한 폐보존액 들의 효과를 비교하였다. 대상 및 방법: 토끼 폐장 분리관류 모형에 실험군은 각각 6마리씩 4개군으로 단순 LPD 페보존액만 사용한 경우(I군), LPD 용액에 NTG 만 참가한 경우(II군), cAMP 만 첨가한 겨우(III군) 그리고 두가지 모두를 첨가한 경우는 IV군으로 분류하였으며, 폐보존액이 주입된 심폐블록은 영상 1$0^{\circ}C$에서 24시간 동안 보관한 다음 100% 산소농도에서 기계호흡을 하면서 신선 정맥혈로 30분 동안 재관류를 시행하였다. 재관류폐의 평가를 위해 폐기능 및 폐부종 정도를 정량 측정하였으며, 유출로 혈액으로부터 tumor necrosis factor $\alpha$(TNF-$\alpha$)와 간접적인 NO의 총량을 알기 위해 nitrite/nitrate의 양을 측정하였다. 또한 재관류가 끝난 후 광학 및 전자현미경학적 소견을 관찰하였다. 결과: 모든 실험군 중 제 IV군 의 폐보존 능력이 가장 우수하였으나, 제 II, III, IV군 사이는 통RP적으로 유의한 차이가 없었다. 제 I군은 제 II, III, IV군들에 비해 유의하게 폐기능이 가장 나쁘고 폐부종 정도가 가장 심했다(p<0.05). 제 II군은 제 III군에 비해 더 좋은 폐기능을 보였고, 폐부종 정도가 덜 하였으나 통계적은 유의성은 없었다. TNF-$\alpha$ 는 제 IV 군이 Irns에 비해 유의하게 분비량이 적었다. (p<0.05). 총 NO의 양은 제 II군과 IV 군이 제 I 군과 III군보다 유의하게 높았으나(p<0.001), 제 II군과 IV군, 제 I군과 III군 사이 비교에서 유의한 차이는 없었다. 또한 제 I 군과 III군에서는 시간이 지남에 따라 유의하게 NO의 양이 점차 감소하였다. (p<0.05). 광학 및 전자현민경 소견상 폐포 및 폐혈관 구조가 제 II, III, IV 군이 I 군에 비해 더 잘 보존되어있었다. 결론: LPD 폐보존액에 db-cAMP 및 NTG의 첨가는 폐보존 효과가 모두 우수함을 확인하였고 이들의 폐보존 효과 차이는 거의 없음을 알수 있었다. 그렇지만 이들의 병합사용이 폐혈관 항상성을 더 잘 유지시킬 수 있고 허혈-재관류 손상을 줄여 폐보존 효과를 높일 수 있을 것이라고 기대된다.

  • PDF

Expression of Intercellular Adhesion Molecule- 1 after Ischemia Reperfusion Injury of the Canine Lung (폐장의 허혈-재관류 손상과 세포간부착물질-1 의 발현)

  • 성숙환;김영태;김문수;이재익;강문철
    • Journal of Chest Surgery
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • Background: Predicting the important role of intercellular adhesion molecule-1 expression on the acute ischemia-reperfusion injury, we set out to demonstrate it by assessing the degree of expression of ICAM-1 after warm ischemia-reperfusion in canine unilateral lung ischemia model. Material and Method: Left unilateral lung ischemia was induced by clamping the left hilum for 100 minutes in seven adult mongrel dogs. After reperfusion, various hemodynamic pararmeters and blood gases were analyzed for 4 hours, while intermittently clamping the right hilum in order to allow observation of the injured Ieft lung function. The pulmonary venous blood was collected serially to measure TNF- and cICAM-1 level. After 4 hours of reperfusion, the lung tissue was biopsied to assess cICAM-1 expression, and to measure tissue malondialdehyde(MDA) and ATP level. Result: The parameters including arterial oxygen partial pressure, pulmonary vascular resistance and tissue MDA and ATP level suggested severe lung damage. Serum TNF-$\alpha$ level was 8.76$\pm$2.37 ng/ml at 60 minutes after reperfusion and decreased thereafter. The cICAM-1 level showed no change after the reperfusion during the experiment. The tissue cICAM-1 expression was confirmed in 5 dogs. Conclusion: The increase of TNF-$\alpha$ Ievel and expression of tissue ICAM-1 were demonstrated after ischemia reperfusion injury in canine lung model.

The Role of Oxygen Free Radicals from Endothelial Cells in Endotoxin-induced Endothelial Cell Cytotoxity (내독소에 의한 혈관 내피세포 손상에서 혈관 내피세포로부터 유리된 산소기의 역할에 관한 연구)

  • Choi, Hyung-Seok;Jeong, Ki-Ho;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 1994
  • Background: The pathogenetic mechanism of adult respiratory distress syndrome(ARDS) is not clearly defined yet, but it is well known that increased pulmonary capillary permeabilty is characteristic feature of ARDS. The increased alveolar-capillary permeability is usually preceded by damage of pulmonary artery endothelial cells. The released enzymes and oxygen free radicals from the activated neutrophils seem to play a predominant role in endothelial cell cytotoxicity. The activated neutrophils, however, probably are not the sole contributing factor in this type of damage because many cases of ARDS have been reported in severe neutropenia. Bacterial endotoxin perse and/or oxygen free radicals released from endothelial cells are suggested to be possible factors that contribute to the development of ARDS. The purpose of this study is to investigate the direct cytotoxicity of endotoxin and the role of oxygen free radicals released from the endothelial cells in endotoxin-induced endothelial cell cytotoxicity. Methods: First, to investigate whether endotoxin is cytotoxic to HUVE by itself, various doses of endotoxin were added to culture medium and cytotoxicity was measured. Second, to evaluate the possible role of oxygen free radical in endotoxin-induced HUVE cytotoxicity, various antioxidants were added on the endotoxin-induced HUVE cytotoxicity and cytotoxicity was measured. Third, to verify the release of oxygen free radicals from HUVE, the concentrations of hydrogen peroxide in the endotoxin-treated culture supernatant were measured. Finally, to observe the cytotoxic effect of hydrogen peroxide, HUVE cytotoxicity in the presence of various doses of hydrogen peroxide was measured. The fourth generations of subcultured HUVE from primary culture were used. The cell cytotoxicity was quantified by the chromium-51 release assay. Results: 1) Endotoxin alone showed HUVE cytotoxicity in a dose-dependent fashion. 2) Endotoxin-induced HUVE cytotoxicity was significantly attenuated by the pretreatment of catalase and DMTU. 3) Hydrogen peroxide was released from HUVE after endotoxin treatment in a dose-dependent fashion. 4) Exogenous hydrogen peroxide also showed HUVE cytotoxicity in a dose-dependent fashion. Conclusion: These results suggest that endotoxin alone can directly injure HUVE, and, oxygen-free radicals released from HUVE in response to endotoxin may also participate in the endotoxin-induced HUVE cytotoxicity.

  • PDF

Effect of Thyroid Hormone on the Ischemia-Reperfusion Injury in the Canine Lung (갑상선 호르몬이 잡견 폐장의 허혈-재관류 손상에 미치는 영향)

  • 김영태;성숙환
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.637-647
    • /
    • 1999
  • Background: Ischemia-reperfusion injury is one of the major contributing causes of early graft failure in lung transplantation. It has been suggested that triiodothyronine (T3) may ameliorate ischemia-reperfusion injury to various organs in vivo and in vitro. Predicting its beneficial effect for ischemic lung injury, we set out to demonstrate it by administering T3 into the in situ canine ischemia-reperfusion model. Material and Method: Sixteen adult mongrel dogs were randomly allocated into group A and B. T3 $(3.6\mug/kg)$ was administered before the initiation of single lung ischemia in group B, whereas the same amount of saline was administered in group A. Ischemia was induced in the left lung by clamping the left hilum for 100 minutes. After reperfusion, various hemodynamic parameters and blood gases were analyzed for 4 hours while intermittently clamping the right hilum in order to allow observation of the injured left lung function. Result: Arterial oxygen partial pressure $(PaO_2)$ decreased 30 minutes after reperfusion and recovered gradually thereafter in both groups. In group B the decrease of $PaO_2$ was less marked than in group A. The recovery of $PaO_2$ was faster in group B than in group A. The differences between the two groups were statistically significant from 30 minutes after reperfusion $(125\pm34$ mmHg and $252\pm44$ mmHg, p<0.05) until the end of the experiment $(178\pm42$mmHg and $330\pm37$ mmHg, p<0.05). The differences in the arterial carbon dioxide pressure, airway pressure and lung compliance showed no statistical significance. The malondialdehyde (MDA) level, measured from the tissue obtained 240 minutes after reperfusion, was lower in group B $(0.40\pm0.04\mu$M) than in group A $(0.53\pm0.05\mu$M, p<0.05). The ATP level of group B $(0.69\pm0.07\mu$M/g) was significantly higher than that of group A $(0.48\pm0.07\mu$M/g, p<0.05). The microscopic exami nation revealed varying degrees of injury such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. There were no differences in the microscopic findings between the two groups. CONCLUSION T3 has beneficial effects on the ischemic canine lung injury including preservation of oxygenation capacity, less production of lipid peroxidation products and a higher level of tissue ATP. These results suggest that T3 is effective in pulmonary allograft preservation.

  • PDF

Antiinflammatory Effects of Heparin in Hemorrhage or LPS Induced Acute Lung Injury (출혈성 및 내독소 투여로 유발된 급성폐손상에서 heparin의 항염증효과)

  • Kim, Jae Yeol;Choi, Jae Chul;Lee, Young Woo;Jung, Jae Woo;Shin, Jong Wook;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • 배경 : 급성 폐손상은 폐내, 외의 원인질환들에 의해 폐포-모세혈관의 투과성이 증가하며, 폐부종에 의해 급성 저산소성 호흡곤란이 유발되는 증후군이다. 헤파린은 항응고작용 외에 자체적으로 항염증효과를 가지고 있으나, 염증성질환에 헤파린을 투여하면 출혈성 합병증이 발생하기 때문에 실제로 임상에서 이용하는데 제약이 있다. 하지만 헤파린에서 2-O와 3-O sulfate를 제거하면, 항응고 효과가 제거되고 항염증효과는 지니고 있는 비항응고성 헤파린 (nonanticoagulant heparin)으로 변화한다. 본 연구에서는 흰쥐에게 내독소 (LPS)를 투여하거나, 출혈성 쇼크를 일으켜서 유발된 급성폐손상에서 비항응고성 헤파린의 치료효과를 살펴보았다. 방법 : 각 군당 5 마리 이상의 흰쥐 (Balb/c mouse)를 이용하였다. 미정맥 (tail vein)을 통해 생리식염수 또는 비항응고성 헤파린 (50 mg/kg)을 투여한 직후에 내독소를 복강으로 투여하거나 (1 mg/kg), 심장천자를 통해 총 혈액의 1/3 정도로 제거하여 출혈성 쇼크를 유도하여 급성폐손상을 유발하였다. 내독소 투여 또는 출혈성 쇼크 유발 1 시간 후에 흰쥐를 희생시키고 폐를 적출하였고, 폐의 염증성 변화는 사이토카인 ($TNF-{\alpha}$, MIP-2, $IL-1{\beta}$)을 측정하여 살펴보았고, 폐손상의 정도는 myeloperoxidase (MPO) assay와 wet-to-dry weight ratio를 측정하여 알아보았다. 결 과 : 내독소를 투여한 흰쥐의 폐에서 대조군의 폐에 비해 사이토카인의 발현이 증가하고 ($TNF-{\alpha}$; $196.1{\pm}10.8$ vs $83.7{\pm}18.4pg/ml$, MIP-2; $3,000{\pm}725$ vs $187{\pm}26pg/ml$, $IL-1{\beta}$; $6,500{\pm}1167$ vs $266{\pm}25pg/ml$, p<0.05, respectively), 폐의 MPO 활성이 증가하였다 ($27.9{\pm}6.2$ vs $10.5{\pm}2.3U/g$ of lung protein, p<0.05). 출혈성 쇼크를 일으킨 흰쥐의 폐에서 대조군의 폐에 비해 사이토카인의 발현은 증가되지 않았으나, MPO 발현은 증가되었다 ($16.5{\pm}3.2$ vs $10.5{\pm}2.3U/g$ of lung protein, p<0.05). 내독소 투여 또는 출혈성 쇼크에 의해 급성폐손상이 유발된 흰쥐에서 생리적 식염수를 투여하거나 비항응고성 헤파린을 투여한 군 사이에 사이토카인의 발현이나 MPO 활성에 의미있는 차이는 관찰되지 않았다. 결론 : 이상의 결과로 비항응고성 헤파린은 내독소를 투여하거나 출혈성 쇼크를 일으키고 한 시간 뒤에 측정한 흰쥐의 급성폐손상에서 의미있는 치료효과를 보이지 않았다.

Effects of Flushing, Preservation and Reperfusion in the Canine Transplanted Lung Tissue (관류, 보존 및 재관류 과정이 이식된 개의 폐조직에 미치는 영향)

  • Lim, Young-Keun;Park, Chang-Kwon;Kwon, Kun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.4
    • /
    • pp.512-522
    • /
    • 1999
  • Background: Due to the paucity of suitable donor organs for lung allotransplantation, a number of techniques have been developed to improve the lung preservation. Ultrastructural studies of the morphologic changes of the flushing, preservation and reperfusion injury in donor lungs have rarely been reported. Methods: Adult dogs (n=46) were matched as donors and recipients for the single lung transplantation. The donor lungs were preserved after flushing with preservation solution and transplanted after 20-hours of preservation at $10^{\circ}C$. Ultrastructural features of the lung were examined after flushing, preservation and 2 hours after lung transplantation (reperfusion) respectively. Results: Electron microscopy after flushing showed focal alveolar collapse and mild swelling of type I epithelial cells. After preservation both type I epithelial cells and endothelial cells were swollen and destroyed focally. The endothelial cells showed protrusion of tactile-like structures into the lumina, blebs or vacuoles of the cytoplasm After reperfusion the lung tissue showed fibrin material in the alveoli, prominent type I epithelial cell swelling with fragmented cytoplasmic debris and marked endothelial cell swelling with vacuoles or tactile-like projections. The alveolar macrophages showed active phagocytosis. Scanning electron microscopic examination of the pulmonary parenchyma showed focally alveolar collapse and focal consolidation after the preservation and more prominent changes after the reperfusion procedure. The lungs preserved with low potassium dextran glucose solution, with additional prostaglandin $E_1(PGE_1)$ and verapamil(VP) showed relatively well preserved ultrastructures compared with those which were preserved with modified Euro-Collins or University of Wisconsin, and with additional $PGE_1$ and/or VP. Conclusion: The ultrastructural changes associated with flushing were mild in severity, the donor lungs were injured during the preservation, and further damage was occurred during the reperfusion. The reperfusion injury resulted in prominent pulmonary parenchymal alterations with a pattern of acute lung injury.

  • PDF

Increase of Myeloperoxidase Production and Effect on The Heart and Lung during Cardiac Surgery (심장수술시 Myeloperoxidase 생성의 증가와 심장 및 폐에 대한 영향)

  • 최석철
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.281-288
    • /
    • 2000
  • Leukocyte activation with cardiac surgery procedures produces various iuflammatory substances and involves in postoperative pathophysiology. The present study was carried out to elucidate changes in leukocyte myeloperoxidase level and effect on the heart and lung during cardiac operation. Total leukocyte and differential counts in peripheral blood, myeloperoxidase (MPO) and troponin-T concentratiens (TnT) in coronary sinus blood, and pulmonary vascular resistance (PVR) were measured at preoperative and postoperative period. The parameters were compared between sampling periods, and relationship was investigated between MPO and each variable. At the end of operation, there were leukocytosis with neutrophilia (p<0.01), and increases of MPO and TnT concentrations (p<0.05), but decrease in PVR (p<0.05). MPO had a positive correlation to TnT, total leukocyte, neutrophil, or operative times (p<0.05), whereas PVR had a negative relationship to total leukocyte or neutrophil counts (p<0.05). These results indicate that cardiac surgery leads to elevated liberations of myeloperoxidase from neutrophils and may harmfully affect myocardium.

  • PDF

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF

Successful 20 hours Canine Allograft Preservation with new Solution Containing Triiodothyronine - Development of new lung preservation solution II - (삼요드티로닌을 포함한 폐보존액을 이용한 20시간 폐보존 - 새로운 폐 보존액의 개발 II -)

  • 성숙환;김영태;김주현
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 1999
  • Background: Ischemia reperfusion injury is known to contribute to the major causes of the early graft failure in lung transplantation. Triiodothyronine (T3) has been suggested to ameliorate ischemia reperfusion injury from both in vivo and in vitro experiments of various organs. Prospecting its beneficial effect for pulmonary allograft preservation, we made a new solution by adding T3 into the extracellular type dextran solution. Material and Method: Twelve adult mongrel dogs underwent left lung allotransplantation. Six donor dogs were flushed with the new solution(Group 1, n=6), and the remaining six were flushed with Euro-Collins solution to serve as controls(Group 2, n=6). Allografts were stored in each preservation solution for 20 hours at 4$^{\circ}C$. Left single lung transplantations were performed. The right pulmonary artery and the right main bronchus were clamped at 15 minutes after the reperfusion and maintained throughout the experiment to evaluate the transplanted left lung function. Result: Arterial carbon dioxide tension was better in group 1 than in group 2 throughout the experiment period and the difference was statistically significant at 2 hours after reperfusion(28.0${\pm}$3.0 mmHg and 53.1${\pm}$17.4 mmHg, p<0.05). The differences of arterial oxygen partial pressure, peak airway pressure and pulmonary vascular resistance showed no statistical significance. The malondialdehyde(MDA) level, measured from tissue obtained at 120 minutes after reperfusion showed no statistically significant difference. The tissue wet/dry ratio of group 1(649${\pm}$27 %) was significantly lower than that of group 2(686${\pm}$71 %, p<0.05). The microscopic examination revealed varying degrees of injury represented mainly by findings such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. These findings were less severe in group 1 than those in group 2. Conclusion: The new solution demonstrated superior allograft preservation after 20 hour ischemia compared to Euro-Collins solution in canine single left lung transplantation model, these results suggest that T3 might be a promising agent for pulmonary allograft preservation.

  • PDF