• Title/Summary/Keyword: 폐유리 경량골재

Search Result 17, Processing Time 0.021 seconds

Properties of Light-weight Concrete containing Foamed Glass as a part of Fine Aggregate (발포유리소재를 잔골재로 부분 치환한 경량콘크리트의 특성)

  • Lee, Jin-Woo;Park, Hee-Gon;Bae, Yeoun-Ki;Lee, Jae-Sam;Lee, Keun-Haeng;Moon, Sung-Whan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • In these days, properties of concrete has been demanded to be high performance because concrete structure was bigger and higher. So studies on high strength concrete and lightweight concrete has been frequently done. But lightweight concrete has been used to limited non-structural elements in th country. Lightweight aggregate mixed with lightweight concrete was only coarse aggregate in case of the structural lightweight concrete. In the country studies on the lightweight concrete was poor and unvaried. Also it is difficult to be practical use of lightweight concrete was that it has been expensive. It was study on the using fine lightweight aggregate with lightweight concrete to crushed by-products and wastes to get to make foamed glass with recycled glass. So it was tested by fine aggregate standard and mixed with.

  • PDF

Performance Evaluation of Artificial Lightweight Aggregate Mortar Manufactured with Waste Glass (폐유리로 제조된 인공경량골재를 이용한 모르타르의 물리적 성능에 대한 평가)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Nam, Ba-Reum;Park, Kwang-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • The compressive strength test, bulk density and mortar absorption ratio were carried out to utilize the data as the basic sources for the lightweight mortar and the lightweight concrete, through the study on the physical characteristics of the artificial lightweight aggregate (ALA) made of waste glasses, which was developed for the first time in the country. On the basis of these experiments, the density and the unit volume weight of the ALA showed the value less than 50% of the common aggregate due to the independent pore structure, and the mortar that contains ALA had no big difference from the Control mortar in the test of the absorption ratio. It is judged that this happens based on the internal independent pore structure of the ALA. In case of the mortar containing ALA, there was a tendency of declination in the compressive strength and the bending strength as the mixing rate is increasing, but all mortar showed more than 70% of the Control mortar compressive strength except for the La50 mortar. Hereafter, it is judged that according to the control of the mixing ratio of mineral admixing agent, water and cement, it will realize the equal strength to the control mortar, and the long term edurance is needed to be considered together.

Characterization of artificial aggregates fabricated from coal bottom ash containing much unburned carbon (미연탄소가 다량 함유된 석탄바닥재로 제조된 인공골재의 물성분석)

  • Kang, Min-A;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • The artificial aggregates (AAs) were manufactured from the parent batch powders consisting of bottom ash containing excess unburned carbon and dredged soil, 7 : 3 weight ratio by direct sintering method and those physical properties were evaluated. Especially, the effects of waste glass or frit (NWG) which was made by addition of 5 wt% $Na_2O$ to the waste glass upon the bloating phenomenon of AAs were analyzed. The AAs manufactured from the parent batch powders showed a lower specific gravity than that of specimens containing waste glass or NWG due to excess u$Na_2O$nburned carbon which usually obstructs a sintering process. But, the waste glass added on parent batch powders promoted the sintering and densification thus increased the specific gravity of AAs. Also the specific gravity of AAs added with 5 wt% NWG, was lowered compared to that of AAs added with as-received waste glass. This is because of bloating of shell which captures gases owing to the lowered viscosity of liquid formed at the specimen surface caused by $Na_2O$ addition. In conclusion, the AAs sintered at above $1100^{\circ}C$ in this study showed characters of lightweight aggregate of specific gravity 1.15~1.34 and water absorption 11~19 %, and the bloating phenomenon of AAs was occurred at the shell rather black core part.

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.

Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass (폐유리를 재활용한 인공경량골재의 발포기구)

  • Kang, Shin-Hyu;Lee, Ki-Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

Foaming Process of Waste LCD Glass for the Recovery of Valuable Materials from Waste LCD Pannel (폐 LCD판넬의 유가성분 회수를 위한 폐 LCD유리의 발포공정)

  • Lee, Chul-Tae;Park, Tae-Moon;Kim, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • Recycling method of waste LCD glass is the essential process for developing the total recycling process of LCD pannel. Pulverizing of LCD glass, determination of proper carbonacious foaming agent, the properties of residue from the recovery of valuable materials through an acid leaching process and the feasibility for the foaming of the residue obtained from leaching for indium and tin recovery were investigated for the developing of recycling method of waste LCD glass as industrial feed materials, such as heat insulation materials, sound absorbing materials, carrier of water treatment. Waste LCD glass could be pulverized finely for foaming process. Natural graphite was proper agent for foaming of the residue and the foaming technology of LCD glass would be effective recycling alternatives.