• Title/Summary/Keyword: 폐열회수

Search Result 253, Processing Time 0.025 seconds

'지역사회의 에너지절약문화를 힘껏 이끌겠습니다'

  • 에너지절약전문기업협회
    • The Magazine for Energy Service Companies
    • /
    • s.21
    • /
    • pp.28-29
    • /
    • 2003
  • 폐열회수와 에너지 다소비 공정 개선, 신제조 공법 도입 등을 통해 비용을 절감할 수 있도록 산업체 에너지절약을 적극 유도할 계획입니다. 특히, 자금여력이 없는 기업들에게는 ESCO사업을 활용할 수 있도록 도와주고, 에너지다소비업체에 대한 지속적인 기술지도를 해나가고자 합니다.

  • PDF

Study on Heat Recovery System using Waste Biomass (폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구)

  • Lee Chung-Gu;Lee Se-Kyoun;Lee Kye-Bock;Rhi Seok-ho;Ryou In-Seon
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.248-258
    • /
    • 2005
  • In the present study, in order to estimate possibility as a waste heat recovery system, three different heat exchangers are developed. The developed heat exchangers are tile system to supply the hot water using fermentation of waste biomass. For the experiments, various biomass materials were examined to obtain the best heat recovery. Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. The biomass heat exchanger was operated for 20 minutes, after 1 hour from start-up, the temperature of the biomass dump has been raised to the possible operation temperature. From the three time operations per day, the system would be able to supply the amount of energy, about 62,400 kcal/day.

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Mechanical Properties of Heat Exchanger Element with Higher Capacity Waste Heat Recovery PDC Clean Ventilation System (대용량 폐열회수 PDC청정 환기시스템용 열교환 소자의 기계적 특성)

  • Ahn, S.H.;Nam, K.W.;Ahn, B.H.;Kim, D.G.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • Recently, the higher capacity waste heat recovery PDC clean ventilation system has a tendency which is increasing due to the excellent energy reduction in factory, big building, and so on. This system was developed to complement the room environment which is deteriorated. However, the researches and technologies about this system were not well studied. Specially, the characteristic for heat exchanger element used to this system were not well known. Therefore, this study was carried out to evaluate the mechanical properties of the heat exchanger element as the core parts compose of this system. From results, tensile strength and elongation of the plate type heat exchanger element had about 10.11~14.32 kgf/$mm^2$ and 8.0~16.2%, respectively.

  • PDF

Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases (습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측)

  • Jeong, Dong-Woon;Lee, Sang-Yong;Lee, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.

A Study on Heat Transfer Characteristics and Uncertainty of Heat Recovery Ventilator for Various Outdoor Temperature/Humidity Conditions (외기 온습도 조건에 따른 폐열회수 환기장치의 열전달 특성 및 불확실성에 관한 연구)

  • Han, Hwa-Taik;Choo, Youn-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.608-613
    • /
    • 2008
  • The purpose of the present paper is to investigate the effect of outdoor weather conditions on the performance of a heat recovery ventilator. Experiments have been performed by varying outdoor temperature/humidity conditions with the indoor conditions fixed at the standard conditions by KARSE. Results indicate humidity efficiency shows larger uncertainties than temperature efficiency in general. With the heat generation by an internal fan removed, the modified temperature efficiency remains almost constant regardless of the indoor-outdoor temperature difference. The enthalpy efficiency can have very large or negative values in case the outdoor conditions are in the vicinity of the indoor enthalpy line. The direction of heat flow, in such a case, can be opposite to that of moisture flow between two air streams. Discussions are included about various interesting features of the psychrometric processes taking place in a heat recovery ventilator.

Thermal and Flow Analysis of Organic Rankine Cycle System Pipe Line for 250 kW Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.26-33
    • /
    • 2019
  • This study is a thermal and flow analysis of Organic Rankine Cycle (ORC) pipe line for 250 kW grade waste gas heat recovery. We attempted to obtain the boundary condition data through the process design of the ORC, which can produce an electric power of 250 kW through the recovery of waste heat. Then, we conducted a simulation by using STAR-CCM+ to verify the model for the pipe line stream of the 250 kW class waste heat recovery system. Based on the results of the thermal and flow analyses of each pipe line applied to the ORC system, we gained the following conclusion. The pressure was relatively increased at the pipe outside the refracted part due to the pipe shape. Moreover, the heat transfer amount of the refrigerant gas line is relatively higher than that of the liquid line.

A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템 공정설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.