• Title/Summary/Keyword: 폐쇄형 수경재배

Search Result 5, Processing Time 0.038 seconds

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Effect of Drainage Reusing Ratio on Growth and Yield of Summer-cultivated Paprika in Recycling Hydroponic Cultivation (순환식 수경재배에서 배액 재사용율이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-cheol;Choi, Ki-Young;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This experiment was conducted to analyze the effect of drainage reuse rate on the growth and fruiting of summer paprika in closed hydroponic cultivation. The experiment was carried out for 25 weeks from March to September 2015 with 0, 20, 30, 50% mixing ratio of waste nutrient solution using non - recycling hydroponic cultivation as a control. As a result, stem diameter of the test was different in the groups 1 and 2, but no difference showed as the group progressed more than 3 groups. L.A.I tended to decrease with increasing drainage mixing ratio. The number of nodes in the 50% reuse test group was 1.4 compared to the control group, but there was no significant difference. The number of harvested nodes was significantly different in the control group (11.1 nodes) and the 50% reuse test group (8.7 nodes), and the harvested nodes tended to decrease as the drainage was reused. The ratio of harvest was also the same as that of the harvesting node, and the control was the highest at 33.2% and the lowest at the 50% reuse test at 27.6%. Relative yields were reduced by 30%, 35% and 45% in the control group in the first group, and this tendency was also observed in the second and fourth groups. However, in the 3 and 5 groups, the production of 50% test group increased by 13% and 5%. The ratio of unmarketable fruit was increased 2%, 4%, 4%, and 7% in 0%, 20%, 30% and 50% reuse test, respectively. In conclusion, if the decrease in yield due to the decline in early growth is carefully managed, even if the imbalance of inorganic ions occurs after the mid-term growth, the growth of the crop will enter into a stable period and the re-use will not be worried about the growth and the yield decrease.

Effect of Reused Cocopeat Substrate on Growth and Yield of Summer-cultivated Paprika in EC-based Recycling Hydroponic Cultivation (EC기준 순환식 수경재배에서 코크피트배지 재사용이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-Cheol;Choi, Ki-Young;Yeo, Kyung-Hwan;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • This experiment was carried out to analyze the effects of substrate reuse on the growth and yield of summer paprika in cyclic hydroponics. The test group was divided into a new coco slab, one year reused coco slab two year reused coco slab based on 30% nutrient solution reuse, and was performed from April 18 to November 31, 2016 for 30 weeks. As a result, plant height of early growth was that the 2 year reused slab was longer than the new slab but the final growth period was 56.58 cm shorter. First group flower position was that reused slab was shorter by 2.92 cm than the new slab and the second group flower position was 0.31 cm long. The relative internode length of early growth, when the reused slab was used, the imbalance in the late growth stage was increased compared with the use of the new slab. The number of growth nodes in the 1 and 2 year reused slab was the smallest with 27.4 nodes. However, the number of harvested nodes did not show the difference in the test group, and the ratio of harvested that the 2 year reused slab was the highest at 26.8%. The ratio of unmarketable fruit tended to increase as the growth progressed. Fresh weight was 227.7g for new slab, 219.2g for 2 year reused slab and 21.2g for 1 year reused slab. The dry weight of the new slab increased with the reuse of the slab. It was 17.13g for new slab, 18.26g for 1 year reused, and 19.28g for 2 year reused. The average water content of the entire growth period was smaller as the slab was reused, and the 1 year reused slab was about 20g less than the 2 year reused slab. This trend was steadily occurring throughout the entire growing season. Especially, the reused slab for 1 year was less than 60g after 3 groups compared to other test groups. In conclusion, If will control seriously occurrence of unmarketable fruits by weakening after medium growth in summer-cultivated paprika in EC-based recycling hydroponic cultivation with reused cocopeat substrate, It is not what I have to worry that decrease of the yield and deterioration of the quality due to the change of physical and chemical properties of the slab and the pathogenic bacteria infection.

Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory (수경재배 식물공장에서 다양한 보광 LED가 시금치의 생육과 수량에 미치는 영향)

  • Dung, Nguyen Thi Phuong;Huyen, Tran Thi Thanh;Jang, Dong Cheol;Kim, Il Seop;Thach, Nguyen Quang
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.171-180
    • /
    • 2020
  • The effect of three different light qualities on growth, photosynthesis, quality and safe parameters of hydroponic cultivated spinach (Spinacia oleracea L.) were investigated indoor. Three different light qualities were created of red (660 nm), blue (450 nm) and green (550 nm) LEDs corresponding at ratio R660/B450 = 4/1 (RBL); R660/B450/G550= 5/2/3 (WWL); R660/B450/G550 = 1/1/1 (WL), which were tested at the same intensity (PPFD =190 μmol m-2 s-1). The results showed that the plant height and leaf number were the lowest in WL treatment. The SPAD, Net photosynthesis rate Pn, Fv/Fm, Leaf area index LAI values and all parameters of root characteristics were the highest in RBL treatment and were significantly different from two others. Fresh weight of stem, leaf and root, dry weight of root in the three light qualities were significantly different. In contrast, the highest K+ content in WL was different from WWL and RBL treatments, while Ca2+ and Fe2+ content were the highest in the RBL treatment. Vitamin C content was significantly different between the three treatments. nitrate and oxalic acid contents were the highest in WL treatment, whereas soluble-solids contents and vitamin C contents were the highest in RBL treatment. Oxalic acid, nitrate contents were observed tending reduced under WWL although oxalic acid content in RBL treatment was not different from WL and WWL treatments. In all three different light treatments were not detected Salmonella, E.coli. Our results suggest that RBL may be appropriate light for growth of spinach, but supplementary green light to a combination of red and blue LEDs at the reasonable rate can change the quality of spinach in a positive direction. Hydroponic cultivated spinach was safe for users.

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.