• Title/Summary/Keyword: 폐쇄된 위치의 마이크로폰

Search Result 2, Processing Time 0.018 seconds

Considering Microphone Positions in Sound Source Localization Methods: in Robot Application (로봇 플랫폼에서 마이크로폰 위치를 고려한 음원의 방향 검지 방법)

  • Kwon, Byoung-Ho;Kim, Gyeong-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1080-1084
    • /
    • 2007
  • Many different methods for sound source localization have been developed. Most of them mainly depend on time delay of arrival (TDOA) or on empirical or analytic head related transfer functions (HRTFs). In real implementation, since the direct path between a source and a sensor is interrupted by obstacles as like a head or body of robot, it has to be considered the number of sensors as well as their positions. Therefore, in this paper, we present the methods, which are included sensor position problem, to localize the sound source with 4 microphones to cover the 3D space. Those are modified two-step TDOA methods. Our conclusion is that the different method has to be applied in case to be different microphone position on real robot platform.

  • PDF

A Study on the Robust Sound Localization System Using Subband Filter Bank (서브밴드 필터 뱅크를 이용한 강인한 음원 추적시스템에 대한 연구)

  • 박규식;박재현;온승엽;오상헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • This paper propose new sound localization algorithm that detects the sound source bearing in a closed office environment using two microphone array. The proposed Subband CPSP (Cross Power Spectrum Phase) algorithm is a development of previously Down CPSP method using subband approach. It first split the received microphone signals into subbands and then calculates subband CPSP which result in possible source bearings. This type of algorithm, Subband CPSP, can provide more robust and reliable sound localization system because it limits the effects of environmental noise within each subband. To verify the performance of the proposed Subband CPSP algorithm, a real time simulation was conducted and it was compared with previous CPSP method. From the simulation results, the proposed Subband CPSP is superior to previous CPSP algorithm more than 5% average accuracy for sound source detection.

  • PDF