• Title/Summary/Keyword: 폐석더미

Search Result 13, Processing Time 0.024 seconds

Feasibility Study of Slug Test in Unsaturated Mine Tailings Pile of the Imgi Abandoned Mine in Busan (부산임기광산 폐석적치장에서의 순간충격시험 적용성 연구)

  • Park, Hak-Yun;Ju, Jeong-Woung;Cheong, Young-Wook;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.10-16
    • /
    • 2007
  • The slug test by adding water to well and measuring falling head was conducted to investigate the hydrogeological property of unsaturated or partially saturated mine tailings in the Imgi abandoned mine in Busan. In case that wells were installed with a full screen through two layers with different hydraulic properties, Bouwer and Rice method was useful to estimate the hydraulic conductivity and the depth of mine tailings. In particular, when groundwater dried out in the dry season, the slug test performed by adding water into well to form artificial water table and then conducting falling head test produced the reasonable hydraulic conductivity values. The slug test using falling head test can be an alternative to investigate the hydrogeological property of abandoned mine tailings.

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

Geochemical Behaviour of Zn, Mn and As during the Weathering of Sphalerite, Rhodochrosite, and Manganoan Calcite in the Waste-rock Dumps of the Dadeok Mine (다덕광산 폐석내 섬아연석, 능망간석, 함망간 방해석의 화학적 풍화작용과 Zn, Mn, As의 지구화학적 거동)

  • 정기영;이병윤;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.73-83
    • /
    • 2000
  • 다덕 광산 폐석내 섬아연석과 함망간탄산염 광물의 풍화현상과 그에 따른 중금속의 거동을 조사 하였다. 섬아연석은 풍화초기에 극미립 산화철의 망상구조 집합체로 교대되었으며, 후기에는 자연황이 용해중인 섬아연석과 산화철 집합체 사이에 침전되었다. 산화철 집합체에는 As가 다량 함유되어 있다. 능망간석와 함망간 방해석은 함아연산화망간의 망상구조 집합체로 교대되었으며, 함망간방해서과 함아연산화망간 사이에는 스미소나이트가 침전되었다. 선택적 용해외 X선회절분석을 이용하여 감정한 결과, 함아연산화망간은 헤테롤라이트/하이드로헤테롤라이트인 것으로 판명되었다. Zn의 일부는 규산과 결합하여 입간 공극에 월레마이트로 침전되었다. 풍화 초기에 형성되는 극미립 산화철 및 함아연산화망간의 치밀한 망상 집합체는 풍화용액의 순환을 차단하여, 모광물의 풍화 반응을 지체시키는 지화학적 장벽 역할을 하였다. 이에 따라 망상구조 내에 조성된 국지적 미환경하에서 풍화중간산물들이 침전되었다. 이상의 연구 결과로 다음과 같은 사항을 추론할 수 있다. 섬아연석의 Fe와 함망간탄산염의 Mn은 각각 산화철과 산화망간으로 침전되어 산성화에 기여하였다. 폐광석 더미내 As의 활동도는 저결정질 산화철에의 흡착에 의해 조절되며, Zn의 활동도는 미소환경조건에 따라 하이드로헤테롤라이트/헤테롤라이트, 스미소나이트, 월레마이트 등의 다양한 이차광물의 용해도에 의하여 조절된다.

  • PDF

Heavy Metal Concentrations in Soils and Crops in the Poongwon Mine Area (풍원광산 지역의 토양 및 농작물 중금속 오염)

  • Kim, Jakwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • Abandoned mines release acid mine drainage and cause the contamination of soil and crops around the mine area. The objective of current study is to evaluate effect of mine on the soil and crop contamination. Soils, water, and crops were collected and analyzed, and the heavy metal data were classified into types of the soil, types of crops, and distance from the minehead. Surface soils of the mine area were highly contaminated with heavy metals, especially with zinc and lead. Tailings and cultivated paddy soils were also highly contaminated. Heavy metal concentrations upon distance from minehead decrease steadily as the distance from the minehead increase. The correlation between heavy metals was extracted from soils and the content in the rice samples showed a positive relation for arsenic and cadmium but not a meaningful relation for other metals.

Effects of Soil Covering Depth and Vegetation Base Materials on the Growth of Lespedeza cyrtobotrya Miq. in Abandoned Coal Mine Land in Gangwon, Korea (폐석더미에서 복토 및 식생기반재 처리가 참싸리(Lespedeza cyrtobotrya Miq.)의 생장에 미치는 영향)

  • Kim, Jeong-Hwan;Lim, Joo-Hoon;Yi, Koong;Lee, Im-Kyun;Jeong, Yong-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.61-67
    • /
    • 2012
  • This study was conducted to evaluate the effects of soil covering and vegetation base materials implementation on the growth of Lespedeza cyrtobotrya Miq. in abandoned coal mine land. We compared the biomass of L. cyrtobotrya at the study plots of four different soil covering depth (control, 10cm, 20cm, and 30cm) and four different compounds of vegetation base materials composed of soil conditioner (S), erosion control (E), and peat moss (P) (control, S+P, E+P, and S+E+P). The result showed that the biomass of L. cyrtobotrya was higher in the study plots implemented with soil covering than control plot, although the increase in biomass was not constant with soil covering depth. In case of the vegetation base materials treatments, the biomass was highest in S+E+P plot, and S+P and E+P plots showed higher biomass than control plot.

장풍 폐광산의 산성광산폐수에 의한 침출수 유동에 대한 지구물리 및 지화학탐사자료의 상관해석

  • Kim, Ji-Su;Han, Su-Hyeong;Choe, Sang-Hun;Lee, Gyeong-Ju;Lee, In-Gyeong;Lee, Pyeong-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2002
  • Geophysical surveys(self-potential, electromagnetic, electrical resistivity, and seismic refraction methods) were performed to delineate the flow channel of leachate from a AMD (acid mine drainage) by correlating the anomalies to geochemical characteristics at an abandoned mine (Jangpoong mine). The geophysical responses attempted to be correlated with water sample analysis data(pH, EC, heavy metals, ${SO_4}^{-2}$). Electrical dipole-dipole resistivity sections represent the low-resistivity zone trending northwest, which indicates the leachate flow by AMD along the contact of the mine waste rock dump and the bedrock. From the overall points of geophysical and geochemical anomalies, it is summarized that the flow channel of leachate by AMD can be successfully imaged with composite interpretations on the geophysical and geochemical studies.

  • PDF

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

Effects of Soil Covering Depth and Vegetation Base Materials on the Competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq. at Abandoned Coal Mine Land in Gangwon, Korea (강원도 석탄 폐광지 주변 폐석더미에서 복토와 식생기반재 처리가 소나무(Pinus densiflora Siebold & Zucc.)와 참싸리(Lespedeza cyrtobotrya Miq.)의 경쟁에 미치는 영향)

  • Yi, Koong;Lim, Joo-Hoon;Kim, Jeong-Hwan;Lee, Im-Kyun;Jeong, Yong-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • This study was conducted to evaluate the effect of soil covering depth and vegetation base materials on the competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq., which were grown in an abandoned coal mine land for three years after seeding, by comparing their growth and stem density. The study site was consisted of sub-plots with four different soil covering depths (0cm, 10cm, 20cm, and 30cm) and four different compounds of vegetation base materials (peat moss (control), soil conditioner+peat moss (S+P), erosion control material+peat moss (E+P), and soil conditioner+erosion control material+peat moss (S+E+P)). Results of this study showed opposite pattern between P. densiflora and L. cyrtobotrya with different soil covering depth and compounds of vegetation base materials in general. P. densiflora showed the highest growth and stem density in plots with 10cm and 0cm depths of soil covering, respectively, while the lowest was shown in plots with 20cm depth of soil covering. In contrast, L. cyrtobotrya showed the highest growth and stem density in plots with 20cm depth of soil covering, while the lowest was shown in plots with 0cm depth of soil covering. In case of vegetation base materials, P. densiflora showed the highest growth and stem density in control plots and plots treated with S+P, respectively, while the lowest was shown in plots with S+E+P treatment. On the other hand, L. cyrtobotrya showed the highest growth and stem density in plots treated with S+E+P, while the lowest was shown in control plots. These results suggested the competition between two plants as a major cause of opposite patterns, which is induced by the suppressed growth and stem density of P. densiflora by fast growing L. cyrtobotrya. Despite the suppression of L. cyrtobotrya on P. densiflora, L. cyrtobotrya can play a positive role in improving soil quality, and thus it would be more desirable for restoring abandoned coal mine land to manage the growth of L. cyrtobotrya periodically, rather than eliminate them.

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.