• Title/Summary/Keyword: 폐기물에너지

Search Result 685, Processing Time 0.03 seconds

Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water (혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성)

  • Han, Seong Kuk;Jung, Hee Suk;Song, Hyoung Woon;Kim, Ho;Ahn, Dae Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.23-32
    • /
    • 2014
  • Recently, it is increase in the processing of organic waste using anaerobic digestion. Therefore, the studies on the processing method for increasing the anaerobic digestion waste water. But it is very difficult to solid-liquid separation, because the characteristics of anaerobic digestion waste water. So this study evaluate solid-liquid separation efficiency of anaerobic digestion sludge using CST(Capillary Suction Time), TTF(Time to Filter). To address this problem, a membrane filter press of the lab scale was produced and the anaerobic digestion wastewater was applied to it. Polymer coagulants were found to be most suitable 7192PLUS and 1T60, It is necessary to minimum injection concentration is 7192PLUS (200 mg/L), 1T60 (100 mg/L). To evaluate dehydration efficiency, it was measured the moisture content of the dehydrated cake and suspended solids of decanted water. As a result, showed that a high removal efficiency of 97.4% when the solid-liquid separation using the membrane filter press. And the moisture content of the dehydrated cake was less than 65%.

Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes (음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율)

  • Jin, Sheng-De;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

A Study on the sludge drying using waste heat of cogeneration plant (열병합발전소 보일러 폐열을 이용한 슬러지 건조 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Jun-Hyung;Jo, Suk-Jin;Kwak, Sung-Sik;Woo, Young-Hoon;Jeon, Jong-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.60-60
    • /
    • 2011
  • 염색폐수의 정화에는 필연적으로 다량의 슬러지 폐기물이 발생한다. 염색폐수 슬러지는 그간 인근 공해 해상에 투기하는 해양 배출로 저렴하게 처리하였으나, 해양오염을 우려하는 국제협약(1972년 런던협약, 1996년 교토의정서)에 의하여 2008년 8월부터 배출기준이 강화되고 2012년 2월부터는 해양배출이 금지 될 예정이다. 염색폐수 슬러지의 해양 배출이 금지되면 대체 처리방법으로는 지정매립장을 통한 매립처리 방법이나 고온 소각시설에서의 소각처리 방법이 거론되고 있다. 그러나 매립처리는 슬러지 내 함유 수분으로 인한 침출수의 문제와 더불어 장기간 안정적으로 저렴하게 사용할 수 있는 대규모 처분장을 확보하기 어려운 실정이며 소각처리는 슬러지의 높은 함수율로 인해 소각 시보조 연료의 투입이 필연적으로 최근 원유가 급등 등 에너지 비용이 지속적으로 상승함을 고려할 때 소각처리비용 또한 상당한 고가가 될 것으로 예측된다. 이와 같이 슬러지 해양배출이 금지되면 섬유 염색업체들은 많은 환경비용 부담을 안을 것이다. 본 연구에서는 대규모 염색산업단지 공동폐수처리장에서 발생하는 염색폐수 슬러지의 효율적인 건조를 위해 산업단지 내의 열병합발전소에서 발생하는 보일러 폐열을 이용하였으며, 조건 특성 및 효율을 파악하기 위해 보일러 폐열의 특성을 고려하여 슬러지 두께 및 체류시간 등 건조공정 운영조건에 따른 변수별 연구를 수행하였다. 열병합발전소 보일러에서 배출되는 폐열은 온도가 $150^{\circ}C$ 정도로 기존의 슬러지 건조에서는 사용되는 $700^{\circ}C$에 비해서는 매우 저온이다. 하지만 보일러 배가스의 경우, 온도에 비해 많은 풍량을 가지고 있으므로 열량으로 환산시 충분히 가치가 있는 것으로 조사되었다. 염색폐수 슬러지의 경우, 함수율 70% 이내의 탈수 Cake 형태이므로 두께가 두꺼울수록 건조효율이 감소하였으며, 체류시간이 길어질수록 건조효율은 증가하나 20mm 이상에서는 건조효율이 급격히감소하였다. 이를 바탕으로 5톤/일 규모 슬러지 건조 Pilot Plant를 제작하여 운영하였는데, 염색폐수슬러지의 투입공정에서 슬러지와 열풍의 접촉면적을 넓혀 건조효율을 높이기 위하여 슬러지를 압출노즐을 이용하여 슬라이스 칩 형태로 제조하여 건조공정에 투입하였으며, 건조실 내에서도 건조효율의 상승을 위하여 내부열풍순환팬을 설치하여 운영하였다. Pilot 운영결과, 체류시간 52분에서 슬러지의 함수율은 70%에서 10%이하로 감소하였다.

  • PDF

A Study on the Characteristics of Coffee Ground(CG)-RDF by Using Different Drying Method (건조법에 따른 커피박 고형연료의 특성 고찰 연구)

  • Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.451-457
    • /
    • 2019
  • In this study, the characteristics of coffee grounds were reviewed by making them from solid fuel through heat-drying and oil-drying method. The differences in the higher calorific power by each dried sample were compared. And industrial analysis using the thermogravimetric analyzer was considered for applicability to organic waste and oily samples. Before and after drying, the surface of the specimen was observed with SEM equipment and the ingredients were measured through the EDS equipment. As a result, no other hazardous substances, such as heavy metals, were measured. Next, The differences between thermal decomposition and combustion reactions were considered through the TG and DTG curves. As a result, it is that the oil-dried coffee grounds is longer to burn than the heat-dried coffee grounds. Finally, the combustion gases emitted through the thermogravimetric analyzer were collected and the carbon monoxide and carbon dioxide performed qualitative and quantitative analysis using GC over time.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion (생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향)

  • Chung, Jae-Woo;Lee, Myoung-Eun;Seo, Sun-Chul;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.53-61
    • /
    • 2018
  • Anaerobic digestion (AD) is one of the most widely used process that can convert the organic fraction of waste activated sludge (WAS) into biogas. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. Bioelectrochemical, anaerobic digester was used to increase methane yield from waste activated sludge. The influence of anaerobic digestion sludge and raw sludge mixing ratio (3:7, 5:5) on methane yield and organic matter removal efficiency were explored. As a result, when the mixing ratio of bioelectrochemical anaerobic sludge was 5:5 compared with 3:7, the highest methane yields were 294.2 mL $CH_4/L$ (0.63 times increase) and 52.5% (7.5% increase), the bioelectrochemical anaerobic digester(5:5) was more stable in the pH, t otal alkalinity and VFAs, respectively. These results showed that the increase in the mixing ratio of anaerobic digestion sludge was found to be effective for maintaining the stable performance of bioelectrochemical anaerobic digester.

Importance-Performance Analysis of the Livestock Organic Wastes Recycling Policy (축산 유기성 폐기물 자원화 정책의 중요도-만족도 분석)

  • Kim, Won-Tae;Suh, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.523-531
    • /
    • 2018
  • The purpose of this paper is to derive priorities and implications for the organic resource conservation policy in the livestock sector. We conducted a survey on the importance-performance of the organic waste resource reclamation of livestock sector using a 5-point Likert scale. The importance average for the resource recycling of livestock organic waste was 3.63 and the average of performance was 3.04. As a result of the IPA on livestock manure recycling measures, it is necessary to improve feed quality, establish a local recycling system, increase demand for compost and liquid, enhance customer linkages, and develop cost reduction technologies. It requires intensive support for promoting the spread of odor reduction technologies and integrated management of biomass. It is necessary to introduce mid- and long-term measures such as the revival of feed in tariff, promote by-product feeding, establish solid fuel process management standards, create hygiene safety standards, develop eco-beads and promotion of feed conversion. It is required to strengthen support for the development of odor reduction technologies and prepare consultative organizations among related departments, develop eco-friendly solid fuel technology, and support policies for renewable energy certification.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

Effect of storage temperature, period, and sawdust addition on the biochemical methane potential of cattle manure (우분의 저장온도, 저장기간, 톱밥의 혼합에 따른 메탄잠재량 변화)

  • Im, Seongwon;Kim, Sangmi;Kim, Hyu hyoung;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • In spite of the highest energy potential among all domestic organic solid wastes. the research on biogas production from cattle manure is limited. In particular, effects of organic content degradation and sawdust addition during storage on biomethane potential have never been investigated. In the present work, we investigated the change of organic content during storage of cattle manure under different temperatures (20℃ and 30℃), and its impact on biomethane potential and odor emissions. 90 days of investigation results showed that 10% of organics in terms of VS and COD were degraded at 20℃ during storage, while 30% were degraded at 30℃. This result impacted on biomethane potential, while 10-13% and 24% reduction were observed from beef and dairy cattle manure, respectively. The temperature also affected on CH4 and odor emissions during storage by 3.3-3.8 times and 29 times. The effect of sawdust on lowering down biomethane potential was found to be substantial, reducing 61-75% compared to the control.