• Title/Summary/Keyword: 폐교량

Search Result 3, Processing Time 0.017 seconds

Validations of Reference-Free Crack Detection Technique through a Decommissioned Bridge Test (폐교량 실험을 통한 무기저 손상 진단 기법의 검증)

  • An, Yun-Kyu;Lim, Hyung-Jin;Kim, Min-Koo;Sohn, Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.670-673
    • /
    • 2010
  • 무기저 손상 진단 기법은 능동센서를 이용하여 과거의 기저자료와 현재 상태에서 취득한 유도파의 정보를 비교하지 않고, 구조물의 현재 상태에서 취득한 신호만을 분석함으로써 구조물의 상태를 진단하는 기법이다. 온도 변화 및 하중 변화 등의 외부 환경의 변화에 민감한 유도파의 특성으로 인하여 기저자료를 이용하는 과거의 방법론은 현실적용성이 떨어질 우려가 있다. 본 무기저 손상 진단 기법은 외부 환경적 영향을 최소화함으로써 구조물의 상태를 효율적으로 진단할 수 있다. 최초, 본 연구진에서 제안하였던 무기저 기법은 두 쌍의 능동센서를 구조물에 양면 대칭으로 배치시켜 능동센서의 극성을 이용한 방법이었다. 하지만 실제 구조물의 양면에 완벽한 대칭성을 유지하며 능동센서를 배치시키는 것은 사실상 불가능하다. 이와 같은 한계점을 극복하기 위해 신개념의 듀얼 능동센서를 활용한 무기저 손상 진단 기법이 제안되었고, 수치해석 및 연구실 환경에서 제한적으로 그 실용성이 검증되었다. 본 논문에서는 무기저 손상 진단 기법의 실 구조물에의 적용성을 폐교량을 대상으로 검토하였다. 특히, 보강재를 포함하는 영역에서 본 기법을 적용함으로써 실제 구조물에 적용 가능성을 검증하였다.

  • PDF

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.