• Title/Summary/Keyword: 폐골재

Search Result 206, Processing Time 0.024 seconds

Optimum Mix Design of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 적정배합설계)

  • 박제선;윤경구;김태경;백민경
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.195-206
    • /
    • 1997
  • 산업폐기물인 폐주물사를 재활용하여 에너지절감과 환경오염방지효과를 얻을 수 있다. 반요인실험법을 사용하여 폐주물사를 잔골재에 일정비율 치환한 콘크리트의 적정배합설계제시를 위한 예비실험에서 물-시멘트비, 폐주물사의 잔골재치환율, 잔골재율, 슬럼프와 같은 주요변수와 변수사이의 2차상호작용을 파악하였다. 예비실험결과 폐주물사의 잔골재치환율 70%까지 실시하였을 때 폐주물사를 혼입한 콘크리트의 강도 발현에 가장 중요한 변수는 물-시멘트비로 분석되었고 폐주물사의 잔골재치환율은 거의 영향이 없는 것으로 분석되어 폐주물사를 콘크리트의 잔골재로 대체할 수 있음을 알 수 있었다. 각 변수의 2차상호작용에서는 폐주물사의 잔골재치환율과 잔골재율의 상관관계가 콘크리트의 강도발현에 가장 큰 영향을 미치는 것으로 나타났다. 목표압축강도에 대한 적정배합조건을 폐주물사의 잔골재 치환율에 따라 물-시멘트비, 잔골재율에 대해 제시하였다.

Freeze and Thaw Durability of Concrete Using Recycled Aggregates (재생골재를 사용한 콘크리트의 동결융해 저항성)

  • 문대중;팽우선;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.307-314
    • /
    • 2002
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituting for insufficient natural aggregate, saving resources and protecting environment. There, however, are some Problems not only the large difference of dualities in recycled aggregates but also a little deterioration of mechanical properties in recycled aggregate concrete in comparison with that of natural aggregate concrete. In this study, the test results of freez and thaw durability of concrete with demolished-concrete recycled aggregate(DRA) arc as follows. Improvement of crushing process is an important assignment because that adhered mortar on source-concrete recycled aggregate(SRA) and DRA highly affects thc qualifies of recycled aggregate. The compressive strength of recycled aggregate concrete was not highly different in comparison with that of control concrete. But the resistance to penetration of Cl in recycled aggregate concrete was shown smaller than that of control concrete because of adhered mortar on recycled aggregate. The resistance to frcezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA-SRA and DRA was more decreased than that of control concrete. On the other hand, durability factor of concrete with AA-SRA was larger than that of control concrete. It, therefore, is necessarily required that recycled aggregate including adequate entrained air should be used for satisfying the freez and thaw durability of recycled aggregate concrete.

An Experimental Study to Determine the Mechanical Properties of Recycled Aggregate Separated from Demolished Concrete and Recycled Aggregate Concrete (폐 콘크리트에서 분리된 재생골재와 재생콘크리트의 공학적 특성규명을 위한 실험적 연구)

  • 전쌍순;이효민;황진연;진치섭;박현재
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Recently, the reuse of coarse aggregate derived from demolished concrete was introduced into practice with two environmental aspects: protection of natural sources of aggregate and recycling of construction waste. However, recycled aggregate has been used for the very limited application such as subbase material for pavement and constructional filling material because it was considered as low quality constructional materials. In the present study, in order to examine the possibility that recycled aggregate can be used for concrete mixing, we conducted various experimental tests to identify mineralogical, chemical and mechanical properties of recycled aggregate and to determine the workability and mechanical properties of recycled aggregate concrete (RAC). The cement paste and mortar contained in recycled aggregate significantly affect the basic mechanical properties of aggregate and the workability and mechanical properties of RAC. However, RCA mixed with the proper replacement ratio of recycled aggregate shows the comparable compressive strength and freeze and thaw resistance to those of normal concrete. Therefore, it is considered that recycled aggregate can be widely used for concrete if the cement paste and mortar can be efficiently removed from recycled aggregate and/or if the effective replacement ratios of recycled aggregate are applied for mixing concrete.

Evaluation of Impurity Content Criteria of Recycled Aggregate for Lean Concrete Base (빈배합 콘크리트 기층용 순환골재의 이물질 품질기준 적정성 연구)

  • Kim, Nam-Ho;Yang, Seung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • A recent shortage in Korean aggregate market leads a social demand to utilize recycled aggregate to more advanced level, such as the use in concrete structures or paving materials for surface and base layers. Government announced a recycled aggregate guideline in 2009 to provide an institutional framework for recycled aggregate in such an up-scaled use. The use of recycled aggregate in such use; however, is very minimal. This paper evaluates the validity of the impurity content criteria of recycled aggregate for lean concrete base through a series of material tests. The analysis results shows that reclaimed asphalt pavement (RAP) in recycled aggregate not only influence a strength lean concrete adversely, but also influence negatively on an absorption and abrasion characteristics of aggregate system significantly that made those two indices lower. Since absorption and abrasion characteristics are very important indices for recycled aggregate quality, RAP in recycled aggregate could significantly mislead the recycled aggregate qualification. This paper provides a suggestion to resolve these problems.

Recycling Plan for Waste Concrete Fine Aggregate as Materials of Anti-Frost Layer and Sub-Base Layer (도로의 동상방지층 및 보조기층재로서 폐콘크리트 잔골재의 재활용 방안)

  • Lee, Dong-Wook;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • In this study, a recycling plan for waste concrete fine aggregate as fill material was researched by investigating environmental engineering properties. It is noted that the environmental influence of waste concrete fine aggregate is little since chemical level is satisfied the waste management standard. Waste concrete fine aggregate is not suitable for materials of anti-frost layer and sub-base layer since the particle-size distribution and engineering properties are not partially satisfied the quality standard. However, waste concrete fine aggregate can be recycled as materials of anti-frost layer and sub-base layer if we improve the engineering properties by mixing bigger aggregates than maximum particle size (5 mm) more than 25 percent of total weight.

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

Development of High quality Recycled Aggregate Production Process from Waste Concrete for Resource Circulation System (자원순환형(資源循環型) 사회(社會) 구축(構築)을 위한 고품질(高品質) 순환골재(循環骨材) 생산(生産) 공정(工程) 개발(開發) 연구(硏究))

  • Kim, Kwan-Ho;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.27-35
    • /
    • 2009
  • To solve resource exhaustion and waste management problems caused by mass consumption, there are many efforts to change from resource consumption system to recycling system. Specially, interests about management of construction waste have increased, but efficient recycling system of waste concrete is not established yet. In this study, high quality recycled aggregate processing circuit was developed to recycle waste concrete. From the waste concrete which is a hydrated compound with coarse aggregate, fine aggregate, and cement material, high quality recycled coarse aggregate for concrete making was produced by autogenous milling and heat pretreatment method. After then, refinement process was performed to separate fine aggregate and cement material from waste concrete fines by sink float separation and hindered-settling separation. As a result, high quality recycled aggregate was produced from waste concrete by developed processing circuit.

A Study on the Liberation Characteristics of Waste Concrete for Production of High Quality Recycled Aggregate (고품질(高品質) 순환골재(循環骨材) 생산(生産)을 위한 폐콘크리트의 단체분리(單體分離) 특성(特性) 연구(硏究))

  • Kim, Kwan-Ho;Mun, Myoung-Wook;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.52-61
    • /
    • 2010
  • In general, the waste concrete is simply crushed and reused as a recycled aggregate at a low value application such as back filling material. It because that the quality of recycled aggregate is lower than one of natural aggregate due to the insufficient liberation of aggregate and cement mortar. So in this study, the liberation characteristics of liberation of aggregate and cement mortar is analyzed to investigate the limitation of conventional crushing stage at waste concrete processing circuit. In this process, thermal treatment method is evaluated for the enhancement of liberation. From test results, the preferential breakage along the grain boundary is not accomplished by the conventional crushers. It leads a low quality of recycled aggregate and a fracture of aggregate. To solve these problems, gentle breakage is used as a breakage mechanism to induce preferential breakage along the grain boundary. The recycled aggregate produced from the free fall test, which adopts a gentle breakage, shows a better liberation characteristics and a higher quality.

Strength and Fatigue Properties of Recycled Concretes Under 50% Recycled Aggregate Ratio (재생골재 50% 이하 첨가된 재생콘크리트의 강도 및 피로저항 특성)

  • Doh, Young-Soo;Kim, Sung-Tae;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.13-22
    • /
    • 2005
  • Using recycled aggregate from demolished concrete structures provides a peat opportunity fur conserving natural resources. In many parts of world, virgin aggregate deposits have been depleted, and transporting aggregates over long distances can be much more expensive than using a low-cost recycled aggregate. In Korea, about 7-million tons of concrete occurs annually, out of this, about 2-3 million tons are available for recycling. This study is to present the method of utilizing the recycled aggregate. The recycled aggregate concretes were made for compressive strength test, flexural strength test and fatigue test using w/c of 40, 50 and 60%. The replacing rates of recycled aggregate to virgin aggregate were 0, 25 and 50%. The purpose of this study is to compare the fatigue lift of recycled aggregate concrete with that of virgin aggregate concrete. It was shown that the fatigue life of recycled concrete was function of recycled aggregate replacement ratio and water cement ratio.

  • PDF

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF