• Title/Summary/Keyword: 평형 계산

Search Result 616, Processing Time 0.029 seconds

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

Smoking-Induced Dopamine Release Studied with $[^{11}C]Raclopride$ PET ($[^{11}C]Raclopride$ PET을 이용한 흡연에 의한 도파민 유리 영상 연구)

  • Kim, Yu-Kyeong;Cho, Sang-Soo;Lee, Do-Hoon;Ryu, Hye-Jung;Lee, Eun-Ju;Ryu, Chang-Hung;Jeong, In-Soon;Hong, Soo-Kyung;Lee, Jae-Sung;Seo, Hong-Gwan;Jeong, Jae-Min;Lee, Won-Woo;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.421-429
    • /
    • 2005
  • Purpose: It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with $[^{11}C]raclopride$. Materials and Methods: Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of $24.4{\pm}1.7$ years) were enrolled in this study $[^{11}C]raclopride$, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes ($3{\times}20s,\;2{\times}60s,\;2{\times}120s,\;1{\times}180s\;and\;22{\times}300s$). following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. Results: The mean decrease in binding potential of $[^{11}C]raclopride$ between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, p=0.04). Conclusion: These data demonstrate that in vivo imaging with $[^{11}C]raclopride$ PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount or nicotine administered bt smoking.

Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$ (Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성)

  • Yu-Chul Park;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.334-343
    • /
    • 1987
  • The Chemical reactions between $NiL_m{^{2+}}\{$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}\and\ CN^-$ ion were studied by the spectrophotometric method. The equilibrium constants (K_1$) for the 1:1 complex ion, $[NiL_m(CN)]^+\;with\;NiL_m{^{2+}}\;and\;CN^-$ ion were determined in the range of 3 to $25^{\circ}C$. The $K_1\;for\;Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;at\;15^{\circ}C$ was 4.7, 5.3, 6.2, 7.5, 9.4, and 9.8, respectively. The values of $K_1$ decreased with increasing temperature. From the temperature effect on equilibrium constant ($K_1$), thermodynamic parameters $({\Delta}H^{\circ},\;{\Delta}S^{\circ},\;{\Delta}G^{\circ})$ for reaction were evaluated and the reaction of $NiL_m{^{2+}}\;and\;CN^-$ ion was exothermic. $NiL_m{^{2+}\;reacts\;with\;CN^-$ ion to give $Ni(CN)_4{^{2-}}$ ion and macrocyclic ligand $(L_m)$. The kinetics of formation of the $Ni(CN)_4{^{2-}}$ ion of varying the $[CN^-],\;[HCN],\;and\;[OH^-]$ have been investigated at 3∼$25^{\circ}C\;and\;0.5M\;NaClO_4$. Maintaining a constant $[CN^-],\;k_{obs}/[CN^-]^2$ increases linearly with increasing [HCN]. In the presence of large quantities of $[OH^-],\;k_{obs}/[CN^-]^2$ also increases linearly with $[OH^-]$. From the temperature effect on kinetic constant (k_{obs})$, parameter of activation $({\Delta}H^{\neq},\;{\Delta}S^{\neq})$ of reaction of $NiL_m{^{2+}}\;with\;CN^-$ ion were determined. For the $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;series\;{\Delta}H^{\neq}$ gradually decrease as the d-d transition energy, $ν(cm^{-1})$ decrease. And the reaction of the five $NiL_m{^{2+}}\;with\;CN^-$ ion take place by way of equal paths.

  • PDF

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Mantle-derived CO2-fluid Inclusions in Peridotite Xenoliths from the Alkali Basalt, Jeju Island, South Korea (제주도 현무암에 포획된 페리도타이트에 산출되는 맨틀 기원의 CO2-유체포유물)

  • Seo, Minyoung;Woo, Yonghoon;Park, Geunyeong;Kim, Eunju;Lim, Hyoun Soo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.39-50
    • /
    • 2016
  • Negative crystal shaped $CO_2$-rich fluid inclusions, trapped as primary inclusions in neoblasts and as secondary inclusions in porphyroblasts, were studied in spinel peridotite xenoliths from Jeju Island. Based on microthermometric experiments, the solid phase melts at $-57.1^{\circ}C$(${\pm}0.9^{\circ}C$) with no other observable melting events, indicating that the trapped fluid is mostly $CO_2$. The homogenization temperatures show a much wider range from $-39^{\circ}C$(${\rho}=1.12g/cm^{3)}$) to $23^{\circ}C$(${\rho}=0.82g/cm^{3)}$), suggesting that most of the inclusions (originally trapped at mantle conditions) re-equilibrated to lower density values. Nevertheless, the highest density $CO_2$ in our fluid inclusions is consistent with entrapment of fluids at upper mantle pressures (and depths). The calculated trapping pressure from $CO_2$-rich fluid inclusions that appear to be free from re-equilibrium, e.g., showing the lowest homogenization temperatures, is ${\approx}0.9GPa$. Based on the petrographic evidences, the fluid entrapment can be regarded as a late stage event in the evolution of the shallow lithospheric mantle.

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.

Variations of the Wind-generated Wave Characteristics around the Kyung-gi Bay, Korea (경기만 근해에서 풍파의 특성 변화)

  • Kang, Ki-Ryong;Hyun, Yu-Kyung;Lee, Sang-Ryong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • The wind-wave interaction around the Kyung-gi Bay, Korea, was studied using the observed data from ocean buoy at DeuckJeuck-Do from Jan. to Dec., 2005, and from waverider data at KeuckYeulBee-Do on Mar. 19-26 and May 23-28, 2005. Wind-driven surface waves and wave-driven wind speed decrease were estimated from the ocean buoy data, and the characteristics of wave spectrum response were also investigated from the waverider data for the wave developing and calm stages of sea surface, including the time series of spectrum pattern change, frequency trend of the maximum energy level and spectrum slope for the equilibrium state range. The wind speed difference between before and after considering the wave effect was about $2ms^{-1}$ (wind stress ${\sim}0.1Nm^{-2}$) for the wind speed range $5-10ms^{-1}$ and about $3ms^{-1}$ (wind stress ${\sim}0.4Nm^{-2}$) for the wind speed range $10-15ms^{-1}$. Correlation coefficient between wind and wave height was increased from 0.71 to 0.75 after the wave effect considered on the observed wind speed. When surface waves were generated by wind, the initial waves were short waves about 4-5 sec in period and become in gradual longer period waves about 9-10 sec. For the developed wave, the frequency of maximum energy was showed a constant value taking 6-7 hours to reach at the state. The spectrum slope for the equilibrium state range varied with an amplitude in the initial stage of wave developing, however it finally became a constant value 4.11. Linear correlation between the frictional velocity and wave spectrum for each frequency showed a trend of higher correlation coefficient at the frequency of the maximum energy level. In average, the correlation coefficients were 0.80 and 0.82 for the frequencies 0.30 Hz and 0.35 Hz, respectively.