This study deals with the effect of online word-of-mouth (OWOM) variables on the box office. From the result of statistical analysis on 276 films with audiences of more than five hundred thousand released in the Korea from 2012 to 2015, it can be seen that the variables showing the size of OWOM (such as the number of the portal movie rater, blog, and news after release) are associated more with the box office than the portal movie rating showing the direction of OWOM as well as variables showing the inherent properties of the film such as grade, nationality, release month, release season, directors, actors, and distributors.
The aim of this study was to identify the convergence influencing factors on disaster nursing core competencies of nursing students. The subjects of this study surveyed 187 nursing students in D city with a structured self-report questionnaire. Data were analyzed by the SPSS 18.0 program, t-test, ANOVA, correlation and multiple regression. The disaster nursing core competencies average mean score was 3.15(±0.40). Grade and satisfaction of clinical practice were the significant factors related to disaster nursing core competencies in these subjects. Disaster nursing core competencies was positively correlated with disaster perception, disaster attitudes and self-efficacy. The influencing factors on disaster nursing core competencies were self-efficacy(β=0.276), disaster attitudes(β=0.200) and grade(β=0.172). The explanatory power of these variables was 19.1%. Therefore, it is necessary to develop disaster related curriculum and subjects that can improve the disaster nursing core competencies based on the important factors affecting the disaster nursing core competencies.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.1851-1856
/
2006
영화는 대표적인 경험재로 가치판단이 주관적이고 제품 수명주기가 매우 짧아 예측의 불확실성이 높기 때문에 이를 정량적인 방법으로 모형화하기는 쉽지 않다. 이러한 한계점에도 불구하고 한 영화의 상업적 성공을 예측하는 것은 영화 제작자나 배급사, 극장 등 모든 주체에게 수익과 직결되는 중요한 문제이기 때문에 지금까지 다양한 통계 모형이 제시되었다. 그러나 이들 모형의 대부분은 영화흥행에는 영향을 미치나 측정할 수 없는 효과를 반영하지 못한다거나, 추정 모수의 효과가 모든 영화에 대해서 같다는 동일성 가정으로 인해 영화간 이질성을 고려하지 못하고 있다. 따라서, 본 연구에서는 추정 모수의 사전분포를 모호사전분포로 정의함으로써 변수들의 불확실성을 반영할 수 있고, 영화간 이질성을 고려할 수 있는 베이지안 선택 모형을 제안하였다. 모수의 사후분포는 마코프체인 몬테카를로 기법인 깁스 샘플러를 이용하여 추정하였다. 또한, 감독, 배우, 장르 등의 영화 별 속성 변수뿐만 아니라, 입소문에 의한 영화관람 결정 등의 구전효과와 경쟁영화의 개봉으로 인한 효과를 반영할 수 있는 변수를 추가하여 모형의 정확성을 높였다. 2005년과 2006년 상반기에 상영된 영화를 바탕으로 모형을 구축하고 인공신경망 모형과 비교한 결과, 전체적인 예측 정확도에서는 인공신경망 모형과 비슷한 결과를 보이나 상업적으로 성공한 영화를 예측하는 데에는 베이지안 선택모형이 보다 더 우수한 것으로 나타났다. 또한, 개봉 주의 경쟁심화 정도 및 개봉 첫 주의 스크린 수 등이 영화 흥행에 가장 중요한 변수로 나타났으며, 영화 개봉 전 그 영화에 대한 기대치가 높을수록 흥행 성적 또한 좋음을 알 수 있었다. 배우의 힘 및 계절성, 영화 평점 등은 이질성을 고려하지 않은 전체수준에서는 통계적으로 유의하지 않은 것으로 나타났으나, 그룹 간 이질성을 반영한 모형에서는 어느 정도 흥행한 영화를 만들기 위해서는 고려되어야 할 요소로 나타났다.렇지 않을 경우 적절한 벤치마킹 대상을 도출할 때까지 추가적인 분석과정을 반복한다. 제안한 방법을 통하여 조직은 기술적 생산 가능성 외에도 다양한 조직 운영 관점에서 적절한 벤치마킹 대상을 선정할 수 있으며, 이에 따른 목표를 수립할 수 있을 것으로 기대한다. 또한 더 나아가 global efficiency 관점에서 효율적 조직이 되기 위하여 단계적인 벤치마킹 대상 선정과 이에 따른 목표를 수립하는데도 유용하리라 판단된다.$1.20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자($1.27{\pm}0.45L$)보다 더 높게 나타났으며 (t=2.170, P=0.042), 72시간에도 역시 남자($2.16{\pm}0.56L$)가 여자($1.50{\pm}0.47L$)보다 더
As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.
Jo, Yunhee;Gu, Song-Yi;Chung, Namhyeok;Gao, Yaping;Kim, Ho-Jin;Jeong, Min-Hee;Jeong, Yong-Jin;Kwon, Joong-Ho
Korean Journal of Food Science and Technology
/
v.48
no.5
/
pp.430-436
/
2016
Solid phase microextraction and gas chromatography-mass spectrometry (SPME/GC-MS), electronic nose, and electronic tongue were used to characterize the sensory profiles of cider vinegars from Korea (K1-2), China (C1-2), Japan (J1-2), and US (U1-2). SPME-GC/MS detected acetic acid as the common volatile compound in all vinegars, in addition to isovaleric acid, octanoic acid, and phenethyl acetate. Acids and acetic esters were the major components of Korean and US vinegar samples, respectively. Chinese vinegars had high ethyl acetate content, while Japanese samples were characterized by a low content of acetic acid. Principal component analysis (PCA) pattern provided a clear categorical discrimination of Chinese vinegars by E-nose and E-tongue analyses. The instrumental sensory scores and the taste attributes for flavor ($r^2=0.9431$), sourness ($r^2=0.9515$), and sweetness ($r^2=0.8325$) were highly correlated. Therefore, SPME/GC-MS, E-nose, and E-tongue analyses may be useful tools to discriminate the sensory profiles of cider vinegars of different origins.
Research on restaurant recommender systems has been proposed due to the development of the food service industry and the increasing demand for restaurants. Existing restaurant recommendation studies extracted consumer preference information through quantitative information or online review sensitivity analysis, but there is a limitation that it cannot reflect consumer semantic preference information. In addition, there is a lack of recommendation research that reflects the detailed attributes of restaurants. To solve this problem, this study proposed a model that can learn the interaction between consumer preferences and restaurant attributes by applying deep learning techniques. First, the convolutional neural network was applied to online reviews to extract semantic preference information from consumers, and embedded techniques were applied to restaurant information to extract detailed attributes of restaurants. Finally, the interaction between consumer preference and restaurant attributes was learned through the element-wise products to predict the consumer preference rating. Experiments using an online review of Yelp.com to evaluate the performance of the proposed model in this study confirmed that the proposed model in this study showed excellent recommendation performance. By proposing a customized restaurant recommendation system using big data from the restaurant industry, this study expects to provide various academic and practical implications.
Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
Journal of Intelligence and Information Systems
/
v.29
no.1
/
pp.249-263
/
2023
Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.10
/
pp.4762-4767
/
2012
The AF track circuit that detecting train position and transmitting various train control data for DTG to the train on-board is composed of single operation system. If a failure occurs on this system, the driver should be operate the train by manually until the system is restored, because the system cannot control switch machines and signals by automatically. In this process the human error affects to the train delay, collision, derailment and critical safety accident. Therefore, this document has analyzed the effects that each failure mode influences on system and train, and quantified the failure valuation point and class. Basis on this quantified analysis result, MTBF increased and MTTR decreased and failure number also decreased by adopting the independent installation of power supply, the replacement of defected capacitors, the installation of resister cooling system and the improvement of maintenance methods. And the failure factors of AF track circuits were decreased by conducting the preventive maintenance which is a quantitative way of maintenance system by experience.
As online shopping is activated by the development of the Internet, consumers' purchase form is changing from the traditional face-to-face purchase method to online purchase method. Many sellers have flowed into shopping malls, and competition among sellers is very intense. Therefore, sellers in shopping malls need to establish rational marketing strategies by analyzing consumer purchase patterns and product sales trends. In this paper, we analyzed the purchase price of consumers by analyzing the product price, rating, and sales quantity of competitors who sell the same product in open shopping malls by time zone. In addition, the collected information was visualized in a chart so that the company's and competitors' sales trends could be easily compared. Using the above system, it is possible to predict the sales volume through the analyzed purchasing pattern and to select the reasonable price of the product by grasping the sales trend.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.8
/
pp.1407-1414
/
2016
In this study, we develop that Location Recommending System using personal emotion information based on Collaborative Filtering. Previous Location Recommending System recommended a place visited by the user of the rating or the pattern of location for the user place. These systems are not high user satisfaction because that dose not consider the user status or have not objectively the information. Using user's personal emotion information to recommend a high-affinity users who have visited the place felt similar emotions objectively can improve user satisfaction with the place. In this study, a user using a mobile application directly register the recognized emotion information using the current position and bio-signal, and using the registered information measuring the similarity of user with a similarity emotion, predicts a preference for the place it is recommended to emotional place. The system consists of a user interface, a database, a recommendation module.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.