• Title/Summary/Keyword: 평면변형

Search Result 470, Processing Time 0.028 seconds

Laterally Loaded Soil-Pile Interaction Analysis in Frequency Domain (횡하중을 받는 지반-말뚝 상호작용계의 동적 주파수 응답해석)

  • 김문겸;임윤묵;김민규;조석호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used lot a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted lot soil. These two fields are coupled using FE-BE coupling technique. In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, various numerical analyses of piles considering different conditions of soil-pile interaction system are performed to examine the dynamic behavior of the system. It has been found that the developed method which satisfies the radiation conditions of multi-layered half planes can be applied to various structure systems effectively in frequency domain.

  • PDF

Effect of Cyclic Freezing-Thawing on Compressive Strength of Decomposed Granite Soils (동결-융해 반복작용으로 인한 화강풍화토의 압축강도 특성 변화에 관한 연구)

  • Yoo, Chung-Sik;Shin, Boo-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic freezing-thawing on the compressive strength characteristics of decomposed granite soils. A plane strain compression (PSC) tests were performed on a series of test specimens with different freezing-thawing cycles and fine contents to investigate the change in compressive strength under the process of freezing-thawing cycles. Also performed were scanning electron microscope (SEM) tests to investigate the change in structural rearrangement from a micro-scale point of view. The test results showed that the soil particles tend to conglomerate when subject to cycles of freezing and thawing, and that the soil with less fines exhibited decreased shear strength due to the cyclic freezing-thawing while the soils with a larger fine content showed the opposite trend.

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.

Effects of Specimen Geometry on Stress Distribution in Sandwich Specimen Under Combined Loads (복합하중을 받는 샌드위치 시편의 응력분포에 미치는 시편 형상의 영향)

  • Park, Su-Kyeong;Hong, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1587-1592
    • /
    • 2010
  • The effects of specimen geometry and loading conditions on the stress distribution in a sandwich specimen under combined loads are investigated by elastic finite element analysis. A commercial software NASTRAN is used in plain-strain two-dimensional finite element analysis of sandwich specimens; the analysis was performed for three different specimen shape factors and four different combined displacement conditions. The results of computational analysis suggest that the effect of the combined displacement angle, which is defined as the ratio of the shear displacement to the normal displacement, on the size of the non-homogeneous stress distribution is observed only in the case of the shear stress and von Mises stress. Also as the combined displacement angle increases, the size of the nonhomogeneous stress distribution decreases in the case of the shear stress and increases in the case of the von Mises stress. In addition, as the specimen shape factor, which is defined as the ratio of the specimen length to the height, increases, the size of the non-homogeneous stress distribution under combined displacement conditions decreases significantly.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

Reversed Cyclic Latcral Load Test of A 2-Bay 2-Story Reinforced Concrete Frame With Seismic Detail (내진상세를 가진 2경간 2층 철근콘크리트 골조의 반복횡하중 실험)

  • Lee, Han-Seon;Woo, Sung-Woo
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.183-193
    • /
    • 1996
  • The objective of this study is to investigate the characteristics of elastic and inelastic bekavior of ductile momenting-resisting reinforced concrete frame subjected to reversed lateral loading such as earthquake excitations. For this purpose, a 2-bay 2-story reinforced concrete plane frame with seismic detail was designed and one 1/2.5-scale subassemblage was manufactured according to the required similitude law. Then, the reversed load test under the displacement control was performed statically to this subassemblage. Finally, the results of this test were analysed regarding to (1) the design load vs actual strength, (2) degradation in stiffness and strength. (3) failure mode or energy dissipation. (4) local deformations.

The Extraction of Camera Parameters using Projective Invariance for Virtual Studio (가상 스튜디오를 위한 카메라 파라메터의 추출)

  • Han, Seo-Won;Eom, Gyeong-Bae;Lee, Jun-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2540-2547
    • /
    • 1999
  • Chromakey method is one of key technologies for realizing virtual studio, and the blue portions of a captured image in virtual studio, are replaced with a computer generated or real image. The replaced image must be changed according to the camera parameter of studio for natural merging with the non-blue portions of a captured image. This paper proposes a novel method to extract camera parameters using the recognition of pentagonal patterns that are painted on a blue screen. We extract corresponding points between a blue screen. We extract corresponding points between a blue screen and a captured image using the projective invariant features of a pentagon. Then, calculate camera parameters using corresponding points by the modification of Tsai's method. Experimental results indicate that the proposed method is more accurate compared to conventional method and can process about twelve frames of video per a second in Pentium-MMX processor with CPU clock of 166MHz.

  • PDF

Study of the Damage Property of a Contacted Indent by Finite Element Method (유한요소해석에 의한 압입 접촉손상 특성 연구)

  • Cho, Jae-Ung;Kim, Choon-Sik;Lee, Hee-Sung;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5974-5979
    • /
    • 2014
  • Lightweight parts with very uniform precision are manufactured by an indent method and the press technique has been improved. Upon assembly with an indent method, a deformation force due to the compressive force occurs between the pin and hole and the contact surface is affected by damage. Therefore, a 3 dimensional model was made using the CATIA program and the damage on the surface contacted with indent was estimated through the ANSYS program in this study. In the analysis result, the maximum load applied at the PCB plate was 21.3 N when the pin goes through the PCB plate. When PCB plate came out of the pin, the maximum load was 19.24 N. As the structural analysis result, the maximum equivalent stress of Pin 1 was 192.96MPa because the maximum stress occurs at Pin 1 among all parts of this study model. By examining the damage property of the contacted indent and applying this study result to the design of real indentation, the damage can be prevented and the durability can be estimated.

Improved Stability Design of Plane Frame Members (평면프레임 구조의 개선된 좌굴설계)

  • Kim, Moon Young;Song, Ju Young;Kyung, Yong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.225-237
    • /
    • 2006
  • Based on the study conducted by Kim et al. (205a, b), an improved stability design method for evaluating the effective buckling lengths of beam-column members is proposed herein, using system elastic/inelastic buckling analysis and second-order elastic analysis. For this purpose, the stress-strain relationship of a column is inversely formulated from the reference load-carrying capacity proposed in design codes, so as to derive the tangent modulus of a column as a function of the slenderness ratio. The tangent stiffness matrix of a beam-column element is formulated using the so-called "stability functions," and elastic/inelastic buckling analysis Effective buckling lengths are then evaluated by extending the basic concept of a single simply-supported column to the individual members as one component of a whole frame structure. Through numerical examples of several structural systems and loading conditions, the possibilities of enhancement in stability design for frame structures are addressed by comparing their numerical results obtained when the present design method is used with those obtained when conventional stability design methods are used.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.