• Title/Summary/Keyword: 평균 진응력

Search Result 18, Processing Time 0.03 seconds

Formulation of Failure Strain according to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36) (저온용 고장력강(EH36)의 평균 응력 삼축비에 따른 파단 변형률 정식화)

  • Choung, Joonmo;Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • Stress triaxiality is recognized as one of the most important factors for predicting the failure strain of ductile metals. This study dealt with the effect of the average stress triaxiality on the failure strain of a typical low-temperature high-strength marine structural steel, EH36. Tensile tests were carried out on flat specimens with different notches, from relatively smooth to very sharp levels. Numerical simulations of each specimen were performed by using ABAQUS. The failure initiation points in numerical simulations were identified from a comparison of the engineering stress vs. strain curves obtained from experiments with simulated ones. The failure strain curves for various dimensionless critical energy levels were established in the average stress triaxiality domain and compared with the identified failure strain points. It was observed that most of the failure initiation points were approximated with a 100% dimensionless critical energy curve. It was concluded that the failure strains were well expressed as a function of the average stress triaxiality.

Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

Analysis of Stress Concentration between Fillet and Hole in a Stepped Plate under Tensile Load by Photoelasticity (단이 진 인장부재 필릿과 구멍사이 응력집중에 관한 광탄성법 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Young-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • Stress concentrations around discontinuities, such as a hole or a sudden change in cross section of a structural member, have great important cause in the most materials failure because the stress near the points of application of concentrated loads can reach values much larger than the average value of the stress in the member. This paper presents the stress concentrations between fillet and hole at different locations in a stepped plate under tensile loading. The analysis for interaction effect of stress concentration was performed by photoelasticity and ANSYS which is a commercial finite element software. From the analysis results, the circular hole located at the different position from the fillet radius can cause different values of stress concentration factor within interacting region.

Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code (상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션)

  • Choung, Joonmo;Nam, Woongshik;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

Variation of Surface Crack Shape in Pressure Vessel Materials (압력용기 소재에서의 표면균열의 형상변화)

  • 허용학;이주진;이해무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.617-623
    • /
    • 1990
  • Cracks present in pressure vessels have been reported to be mostly semi-elliptic surface cracks. The fatigue crack growth rates(FCGR) of surface cracks in the pressure vessel materials, API5A-K55 and SPV 500, used in this study were showed to be different depending on the direction of propagation of the surface crack. An equation for the prediction of the shape change of the surface crack was obtained by combining the Paris' relations for each direction of surface crack extension and agreed well with the experimental data. And also FGGR in both materials were evaluated and prediction of the shape change of surface crack were made using averaged stress intensity factor.

Characterization of Crazing Behavior in Polystyrene (Polystyrene 의 Crazing 거동 특성)

  • Jeon, Dae-Jin;Kim, Seok-Ho;Kim, Wan-Young
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • Tensile tests of two types of injection-molded polystyrene(PS) samples have been carried out over a wide range of temperature and strain rates in order to characterize their crazing behaviors. Mechanical properties were affected by the formation of crazes as well as test variables. Below the brittle-ductile transition temperature, the tensile stress and the ultimate elongation increased with the molecular weight, strain rate, and with decreasing temperature while the number and average length of crazes also increase. The crazing stress increased with molecular weight, strain rate, and with decreasing temperature. However, the dependence was small compared to the tensile stress. The gap between crazing stress and tensile stress which represents time fur craze formation and growth increased with molecular weight, strain rate, and with decreasing temperature. Crazing was activated near the ${\beta}$-relaxation temperature; crazing stress abruptly decreased at this temperature. During the tensile test, the craze density changed exponentially with the applied stress. At the initial stage, crazes formed slowly. Once a certain number of craze formed, however, the craze density increased rapidly. Craze nucleation and growth occur simultaneously.

Equivalent Stress Distribution of a Stepped Bar with Hole under Torsional Loading (구멍이 있는 단이 진 비틀림 봉의 등가응력분포)

  • Kang, Eun Hye;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.411-419
    • /
    • 2017
  • Stress concentration is one of the causes of the damage due to the large stress than the mean stress acting on the bar. This paper presents the results for stress of a stepped bar with a hole under torsional loading. The analysis for stress concentration and shearing stress was done by ANSYS Workbench which is a commercial finite element analysis software. The analysis results on fillet and hole are increased as the distance between them are become close. In addition, the distribution of the maximum equivalent stress developed in the fillet and hole in the outside range of the specific distance L (-100 mm ~ 300 mm) was almost constant in the models used in the analysis. On the other hand, the distribution of the maximum equivalent stress developed in the fillet and hole in the inside range of the specific distance L (-100 mm ~ 300 mm) was rapidly increasing and decreasing the change in the models used in the analysis. In addition, it was also possible to identify the location where the differences between equivalent stresses of hole and fillet occurred within a specific distance L (-100 mm ~ 300 mm). The analysis results of paper can used when selecting a hole location in a stepped bar under torsional loading.

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions

2D Image Numerical Correction Method for 2D Digital Image Correlation (2차원 DIC 기법 적용을 위한 2D 이미지 보정 수치 해석 기법)

  • Kim, Wonseop;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.391-397
    • /
    • 2017
  • Recently, digital image correlation (DIC) techniques have been used to measure dynamic deformation during tensile testing. The standard tensile test method measures the average displacement of the relevant specimen to calculate the true stress-strain curve. Therefore, the validity of the true stress curve is restricted to the stress incurred within the uniform stretching interval, i.e., the maximum stress corresponds to the starting point of the necking deformation. Alternatively, if DIC is used, the effective range of the strain and strain rate can be extended to the breaking point of the tensile specimen, because of the feasibility of measuring the local strain over the entire area of interest. Because of these advantages, many optical 3D measurement systems have been introduced and used in research and industry. However, the conventional 3D measurement systems are exceedingly expensive and time consuming. In addition, these systems have the disadvantage of a very large equipment size which makes their transport difficult. In this study, a 2D image correction method employing a 2D DIC measurement method in conjunction with a numerical analysis method is developed using a smartphone. The results of the proposed modified 2D DIC method yielded higher accuracy than that obtained via the 3D measurement equipment. In conclusion, it was demonstrated that the proposed 2D DIC and calibration methods yield accurate measurement results with low time costs.