• Title/Summary/Keyword: 평균 열전달계수

Search Result 82, Processing Time 0.023 seconds

Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube (마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1440-1446
    • /
    • 2012
  • This paper presents an experimental study of heat transfer and pressure drop characteristics of supercritical carbon dioxide with PAG inside a horizontal microfin tube. Heat transfer coefficient and pressure drop gradients were measured at 10 MPa in pressure and 520 kg/$m^2s$ in mass flux with variation of PAG mass concentration from 0.06% to 2.26%. The tendencies of both heat transfer and frictional pressure drop characteristics show the same as those of pure $CO_2$ up to 0.3% in PAG mass concentration. In case of 2.26% in PAG mass concentration, measured heat transfer coefficients showed 50% lower than those of pure $CO_2$ near the pseudocritical temperature and measured frictional pressure drop gradients show 1.6 times higher in comparison with those of pure $CO_2$ at $60^{\circ}C$ in $CO_2$ bulk temperature.

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

A Study on the Performance of a Cross-Flow Beat Exchanger by Tube Array Change (튜브배열 변화에 따른 직교류형 열교환기의 성능에 관한 연구)

  • Jeon Yong-Han;Kim Nam-Jin;Kim Chong-Bo
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.28-34
    • /
    • 2006
  • The convective heat transfer on the outer surface of tube arrays perpendicular to the flow direction was experimentally investigated. The test sections which include the aligned and staggered arrangements were made and the local heat transfer coefficients on the outer surface of the tube were measured after the Hour has been fully developed. The results showed that the local heat transfer coefficients of the staggered arrangement, which has transverse pitch of 0.075 m and longitudinal pitch of 0.08 m, were about 15% greater than that of the aligned arrangement. Also, the overall mom Nusselt number of the former was greater thu that of the latter.

Heat Transfer in an Axisymmetric Cavity of a Rectangular Tube (사각관로의 축대칭 공동부에서의 열전달)

  • Park, Yong-Il
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 1990
  • An experimental study for the flow in an axisymmetric cavity of rectangular tube was performed. The pressure and heat transfer coefficient along the side and opposite-walls of the cavity were measured. The cavity length was varied from 80mm to infinity during the experiment. As the result of this study, it was found that as the length of cavity increased beyond the reattachment point, the heat transfer coefficient decreased. It was also found that the mean heat transfer coefficient became maximum near the reattachment point.

  • PDF

Turbulent Flow and Heat Transfer in Concentric Annuli Depending on Position of Wall Roughness (벽면거칠기위치에 따른 이중동심관내의 난류유동과 열전달)

  • 안수환;손유식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 1997
  • 직경 비가 0.56인 이중동심관에 내외측모두 매끈한 벽면, 벽면 거칠기를 안측, 외측, 그리고 양측 모두의 4경우에 대한 난류 유동과 열전달특성을 실험과 이론으로 연구하였다. 시간평균속도분포, 마찰계수, 그리고 최대 속도 지점과 전단응력이 0인 지점들을 피토튜브와 X형 열선 풍속계로 측정하였다. 이중동심관내에서 4가지 경우에 따른 사각돌출형 거칠기효과가 난류 유동과 열전달에 미치는 영향을 수정난류모델을 기초로 하여 연구하였다. 직경비, 거칠기 위치, 레이놀즈수, 그리고 프란틀수 등의 여러 변수에 의해서 난류 유동과 열전달을 고찰하였다. 본 연구는 전체적 효율 측면에서 유리하게 열전달율을 향상시킬수 있는 거칠기 구조를 밝혔다.

  • PDF

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Transient features of natural convection in nanofluid (나노유체 자연대류의 과도 특성)

  • Chang, Byong-Hoon
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This paper reports the experimental study of natural convection heat transfer with $Al_2O_3$-water nanofluid. Experimental apparatus was a cylindrical enclosure with adjustable fluid layer thickness, and the aspect ratio was varied between 10.9 and 30.4. Heat transfer coefficients seemed to have reached a steady value within 30 minutes as the case with pure water. But, decrease in heat transfer coefficient continued for over $1{\sim}2$ hours for inclination angle of $0^{\circ}$, and oscillation in heat transfer was observed for certain inclination angles and aspect ratios for over 10 hours. Oscillation shape and period depended on the aspect ratio and inclination angle. For example, the oscillation period for $0^{\circ}$ was more than twice that for $60^{\circ}$. The maximum Nusselt number occurred at the inclination angle of $30^{\circ}$, and the minimum occurred at $60^{\circ}$ for Rayleigh number less than 1.E5. However the present results were obtained with aggregated nanofluid and would be devoid of generalities.

Numerical Study on Heat Transfer and Pressure Drop Characteristics in a Horizontal Channel with Dimple and Protrusion Arrays (딤플과 돌출이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석적 연구)

  • Kim, Ji-Hoon;Heo, Joo-Nyoung;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this study, numerical analyses were performed on pressure drop and heat transfer characteristics in a rectangular horizontal channel with dimple and protrusion arrays of different height. The dimples/protrusions were installed at both top and bottom walls of the rectangular channel. The dimple and protrusion depths are 0.125, 0.2, 0.25, 0.3, and 0.375 times diameter. In case of the dimple, the highest Nusselt number occurred at the rear side of the dimple, and the average Nusselt number tended to decrease slightly with increase of depth. In case of protrusion, on the other hand, the highest Nusselt number occurred at the front side of the protrusion, and the average Nusselt number was increased with the increase of height. In both dimple and protrusion, the average Nusselt number and pressure drop were increased with the increase of velocity. Performance factor was decreased with the increase of velocity, and it was found that the best performance factor was obtained in the low velocity region.

Evaporation Heat Transfer Characteristics of Propane and Iso-butane in Micro-fin Tubes (마이크로핀관에서 프로판과 이소부탄의 증발 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.35-40
    • /
    • 2007
  • In this paper, evaporation heat transfer characteristics of propane and iso-butane in micro-fin tubes were investigated experimentally. Test section has a micro-fin tube with outside diameter of 12.70 mm, and 75 fins with a fin heights of 0.25 mm. The experimental results summarize as the followings: The average evaporation heat transfer coefficients of He's refrigerants is higher than those of HCFC22, and appeared in the order of iso-butane, propane with respect to the approaching of the high mass flux. The evaporation heat transfer coefficient of micro fin tube is about $10{\sim}80%$ higher than those of smooth tube. This results from the study can be used in the case of designing heat transfer exchanger using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF