• Title/Summary/Keyword: 평균 변형률

Search Result 216, Processing Time 0.03 seconds

High-temperature Low-cycle Fatigue Life prediction of a Liquid Rocket Turbopump Turbine (액체로켓 터보펌프 터빈의 고열 저주기 피로수명 예측)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.18-21
    • /
    • 2009
  • The life of components under high thermal load is typically shorter than other components. The turbopump turbine of liquid rocket is operated under these environments like high temperature and high centrifugal dorce due to high rotating velocity during operating time. These conditions may often cause low-cycle fatigue problem in the turbopump turbine. First of all, to analyze heat stress, ABAQUS/CAE is used and Coffin-manson's equation is used to consider elasticity and plasticity strain. S.W.T's method is used to consider the mean stress effect, using strain history, low-cycle fatigue analysis is done for turbopump turbine which may have FCL(fracture critical location). In this paper, strain life method is applied to analyze low-cycle fatigue.

  • PDF

Evaluation of the Effect of Coupler on the Ductility of Rebar by Uniaxial Tensile Test (1축 인장시험을 통한 커플러가 철근 연성도에 미치는 영향 평가)

  • Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan;Jung, Chi-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Recently, various reinforced concrete joints have been used in reinforced concrete structures. Therefore, it is important to grasp the tensile properties of the spliced rebar. In this study, uniaxial tensile tests were conducted on Grade 60 D22(#7), D29(#9), and two kinds of couplers manufactured according to ASTM A615 standard for evaluating ductility of coupler joints. The strain was measured using an image processing method more accurate and capable of measuring at various points freely. As the result of uniaxial tensile test, it was possible to calculate the stress-strain relationship and the longitudinal strain distribution according to the stress stages and it was founded that the average strain becomes lower as more occupying the coupler joint portions in the same gauge length. In addition, the empirical equations are proposed to account for the effect of the length of the coupler on the ultimate strain and the rupture strain.

Creep behaviour of mudstone in the tertiary Duho Formation at Pohang basin (포항분지 제3기 두호층 이암의 크리프 거동)

  • 김광식;김교원
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.227-238
    • /
    • 2003
  • Understanding of a creep behavior in rocks under a constant load, due to visco-elastic properties of rock, is an essential element to predict a long term ground deformation. In order to clarify the creep characteristics of the mudstone in Duho formation at Pohang basin, deposited during Tertiary, a series of laboratory tests including physical properties, unconfined compressive strength and uniaxial creep tests, was performed. The mudstone showed a higher creep potential due to 26% of clay minerals such as illite and chlorite. The unconfined compressive strength of the rock was $462{\;}kg/\textrm{cm}^2$ in average, and four creep tests were performed under constant stress of 40 to 70 % of the strength. The creep constants in the empirical and theoretical equations were deduced from the time-strain curves obtained from the tests. Among the several equations, the empirical equation proposed by Griggs and theoretical equation of Burger’s model are appreciated as the best one to express the creep behavior of the mudstone. Instantaneous elastic strain was linearly increased with stress level but strain velocity during the first creep is decreased with a similar pattern by time lapse regardless the stress level.

A Theoretical and Numerical Study on the Effects of Prereinforcement of Tunnel Face (터널막장 선행보강 효과에 관한 이론적.수치해석적 연구)

  • 김광진;문현구
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.328-338
    • /
    • 2001
  • Horizontal tunnel face reinforcement using Fiber Glass Tube(FGT) or steel pipe and pipe roofing techniques are frequently used when the stability of newly excavated tunnel is not guaranteed. However, the mechanical behavior of tunnels using these techniques has not been fully understood so far. Therefore, engineering rule of thumb is commonly applied during designing procedure, and it is difficult to adopt these techniques rationally. In this study, the application of a simplified numerical analysis method based on composite mechanics is verified. The mean field theory and the strain energy theory are used to obtain the equivalence elastic moduli of reinforced soil and rock. Furthermore, a parametric study on the deformational behavior of tunnel face is performed for various patterns of prereinforcement.

  • PDF

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제1부 이론적 배경과 실험적 연구)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.445-453
    • /
    • 2015
  • The stress triaxiality and lode angle are known to be most dominant fracture parameters in ductile materials. This paper proposes a three-dimensional failure strain surface for a ductile steel, called a low-temperature high-tensile steel (EH36), using average stress triaxiality and average normalized lode parameter, along with briefly introducing their theoretical background. It is an extension of previous works by Choung et al. (2011; 2012; 2014a; 2014b) and Choung and Nam (2013), in which a two-dimensional failure strain locus was presented. A series of tests for specially designed specimens that were expected to fail in the shear mode, shear-tension mode, and compression mode was conducted to develop a three-dimensional fracture surface covering wide ranges for the two parameters. This paper discusses the test procedures for three different tests in detail. The tensile force versus stroke data are presented as the results of these tests and will be used for the verification of numerical simulations and fracture identifications in Part II.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

The Static Overload Effect Estimations on Fatigue Strength by The Measurement of Local Strain Variation at The Weldment Toe (용접 토우부의 국부적 변형률 측정을 통한 용접부의 정적 과하중에 따른 피로강도의 변화 평가)

  • Lee, Hyun-Woo;Kim, Ju-Hwan;Kim, Hyun-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.59-66
    • /
    • 2001
  • Fatigue strength of the welding structure is governed by the residual stress at the weldment toe and static tensile overloads were known as relieving the residual stresses. In this study, static tensile overloads were applied to the welding structures which caused the relief of residual stresses. The amount of residual stress relief was found as proportional to the change of fatigue limit at the given conditions. Based on the fact of the proportionality between the change of fatigue limit and that of residual stress, simple measurement technique is proposed. Modified stress-life curves base on proposed technique gave good agreement with test results.

  • PDF

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열 해석)

  • 곽효경;송종영;김한수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-84
    • /
    • 2002
  • In this papers, an analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreement with results from the previous analytical studies and experimental data.

Influence of Tension Stiffening Effect on Deflection and Crack Width in RC Members (철근콘크리트 부재의 처짐과 균열폭에 대한 인장증강효과의 영향)

  • Choi, Seung-Won;Yang, Jun-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.761-768
    • /
    • 2010
  • When cracks occur in reinforced concrete structures, a steel carries all tensile force at crack section, while the concrete between cracks carries a part of the tensile force due to bond, so that the steel is less elongated. This is called the tension-stiffening effect, that plays an important role in verification of a serviceability limit state. But it is a complicated work to use a complex strain distribution between cracks, therefore an average strain is used to calculate deflection and crack width. In Eurocode 2, tension-stiffening effect expressed in the first order form or the second order form is used in calculating an average curvature for deflection. In this study for a flexural member deflection and crack width are calculated using various models for the tension-stiffening effect and the results are compared with the values of Eurocode 2 and KCI provisions. As results, the predicted values using the second order form are appeared to be well agreed with the experimental values and it could secure more analytical consistency.