• Title/Summary/Keyword: 평균 $CO_2$ 농도

Search Result 344, Processing Time 0.032 seconds

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

An Estimation of Mean Background Concentrations of Greenhouse Gases Observed on Ulleungdo (울릉도 온실기체 관측자료를 이용한 배경대기 평균농도 산정)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hong, Ji-Hyung
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Mean background concentrations of greenhouse gases such as $CO_2$ and $CH_4$ were estimated on Ulleungdo using PICARRO Cavity Ring-Down Spectroscopy (CRDS) analyzer. To improve the accuracy of $CO_2$ and $CH_4$ concentrations, a standardized QA${\cdot}$QC (Quality Assurance Quality Control) procedure was employed with three steps: 1) the inspection procedure of physical limitation (e.g. the exclusion of data corresponding to the number of data of ${\leq}$50%) for hourly mean values, 2) a stage inspection (e.g. the use of data corresponding to ${\geq}15$ observations per day) for daily mean values, and 3) a fast fourier transform (FFT) analysis using curve-fitting methods for the investigation of climatic characteristics. The monthly mean concentrations of $CO_2$ and $CH_4$ derived from three-step QA${\cdot}$QC procedure were then compared with those observed at Anmyundo (Korea) and Ryori (Japan). Overall, the error of mean $CO_2$ and $CH_4$ concentrations estimated in this study distinctly decreased. However, in comparison with their concentrations monitored at Ryori, the $CO_2$ concentration at estimated at Ulleungdo is soemwhat lower than that of Anmyundo due to the missing data, which is statistically significant. On the other hand, the former has a statistically significant higher value of $CH_4$ that of the latter.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Sevoflurane Sedation Using a Nasal Cannula in Pediatric Patients (소아환자에서 경비 캐눌라를 이용한 세보플루란 흡입 진정)

  • Ji, Sang-Eun;Kim, Jong-Soo;Kim, Jong-Bin;Kim, Seung-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.194-200
    • /
    • 2013
  • A total of 14 children who visited the department of Pediatric dentistry of Dankook University Dental Hospital from January, 2012 to May, 2012 and decided to get dental treatment under inhalation sevoflurane deep sedation, were studied to determine the effectiveness of end-tidal sevoflurane, respiratory and cardiovascular function to analyze monitoring sheets. The Heart rate (H.R) data were mean 101.4 rate/min (76.4-135.4 rate/min). The systolic blood pressure data mean were 96.9 mmHg (84.2-109.2 mmHg) and diastolic blood pressure data mean were 50.5 mmHg (34.0-62.0 mmHg). The Respiration rate (R.R) data mean were 24.4 rate/min (15.0-36.7 rate/min). The $SpO_2$ data mean were 99.4% (97.5-100.0%). The end tidal $CO_2$ ($ETCO_2$) data mean were 27.8 mmHg (16.4-38.0 mmHg). The end-tidal sevoflurane data mean were 1.9 vol% (1.0-3.4 vol%).

Measurements of the Degree of Atmospheric Pollution in Seoul, Korea. (서울특별시에서의 공기 오염도 측정)

  • Kwon, Sang-Wook;Kim, Myon-Sop
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.116-120
    • /
    • 1965
  • The degree of atmospheric pollution from automobile engine exhausts has been measured at 1-ga, Eulchiro, Jung-ku, one of the heaviest traffic junctions in Seoul. By determining the concentrations of Pb, $SO_2, NO_2, NO, CO \;and\; CO_2$ in atmospheric air measured are as follows: Pb, $21{\sim}2 {\mu]g./m^3.;\;SO_2,\;0.33{\sim}0.001\;ppm.;\;NO_2,$ $0.20{\sim}< 0.01\;ppm.;\;NO,\;1.30{\sim}0.02\;ppm.;\;CO,\;40{\sim}<\;5ppm$.; and $CO_2,\;0.040{\sim}0.034%$. The mean concentrations determined are as follows: Pb, $11 {\mu}g./m^3.; SO_2, 0.08 ppm.; NO_2,$ 0.09 ppm.; NO, 0.37 ppm.; CO, 16 ppm. and $CO_2,$ 0.038%. Generally, the concentrations of Pb, $NO_2, NO, CO\; and\; CO_2$ are approximately proportional to the traffic density, vehicles passing per hour.

  • PDF

Effect Of Environmental Condition in High $CO_2$ and Temperature during Cell Nursery Plant on the Seedling Quality in Green Pepper ($CO_2$의 농도 및 온도 환경이 고추의 묘소질에 미치는 영향)

  • 안종길;김한룡;최영환;빈기효홍
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.11a
    • /
    • pp.87-95
    • /
    • 2001
  • 대기중의 이산화탄소 농도는 산업화 이전에 275 ppm이었으나 매년 평균 1.0-1.5ppm씩 증가하여 1990년대에는 약 365 ppm이며(Conway et al., 1994), 다음 2000년대에는 약 두배에 달할 것으로 예측하였다(IPCC, 1990). 이산화탄소의 이러한 증가는 광합성의 재료로 사용되기 때문에(Bowes, 1991, Chen et al., 1997b) 작물의 생산성을 향산시킬 것이다(Bazzaz, 1990; Chen and Lenz, 1997). (중략)

  • PDF

Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST (CFAST를 이용한 구획실 가스화재의 디자인 화재곡선 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the prediction performance of design fire curves (DF) was evaluated for gas fires in a compartment by using CFAST. The CFAST simulations adopted the 2-stage DF suggested by the previous study and the Quadratic and Exponential DF suggested by Ingason. It was found by comparing the simulation and experimental results that the overall prediction performance of the design fire cures for the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ was, from the most reasonable to the most inaccurate, 2-stage DF > Quadratic DF > Exponential DF. The CFAST simulation could not predict for the difference in the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ at door and inner side locations in a compartment. The CFAST simulations also showed a limitation in the prediction of the spatially-averaged temperature at lower layer and the concentration of CO.

Development of Low-Power CO Gas Sensor (저전력 CO 가스센서 개발)

  • Cha, Sung-Ik;Shin, Paik-Kyun;Lee, Boong-Joo;Kim, Jong-Won;Gang, Moon-Sik;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1410-1412
    • /
    • 2003
  • PTC 자기발열기판을 사용해서 저전력 방폭형 CO센서를 제작하고 그 특성을 고찰하였다. CO가스센서의 감지특성을 향상시키기 위하여 Pt가 island 형상을 갖는 다층 Pt/$SnO_2$ 박막구조를 도입하였으며, 이와 같은 구조는 Pt/$SnO_2$ 위에 다시 $SnO_2$ 및 Pt cluster 층들을 연속적으로 증착함으로서 제작되었다. 200ppm의 CO가스농도에서 측정된 다층 $Pt/SnO_2$박막 센서의 감도는 1.72($R_{air}/R_{CO}$)로, 단충 Pt/$SnO_2$ 박막 센서의 최대감도(1.23)보다 훨씬 더 높았다 이것은 Pt와 $SnO_2$사이의 계면적 증대에 기인하는 것으로 생각된다. 제작된 Pt/$SnO_2$ 가스센서의 평균 소비전력은 38.5mW이며, 측정농도범위($30{\sim}1,000ppm$)에서 매우 양호한 감지특성을 나타내었다.

  • PDF

Effects of Protein Sources and Co-culture on In Vitro Culture of IVF-derived Porcine Embryos (단백질 공급원 및 체세포와의 공배양이 돼지 체외수정란의 체외발달에 미치는 영향)

  • 한선경;구덕본;이규승;황윤식;김정익;이경광;한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2000
  • This study was conducted to investigate whether various protein sources and co-culture affect in vitro development of porcine zygotes derived from In vitro maturation/fertilization (IVM/IVF). These results obtained in these experiments are summarized as follows 1. When porcine oocytes matured and fertilized In vitro were cultured in NCSU 23 medium supplemented with various BSA concentrations (0.4, 0.8 and 3.2%), In vitro developmental rates of porcine zygotes to blastocyst stage were 22.9, 18.4 and 14.6%, respectively. High concentration of BSA (3.2%) showed a smaller nuclei number (36.1$\pm$11.8) of blastocysts than 0.4 and 0.8% BSA groups (53.2$\pm$27.4 and 61.2$\pm$22.5, respectively) (P<0.05). This result indicates that high concentration of BSA is detrimental on preimplantation development of IVF-derived porcine embryos. 2. No differences were detected in the developmental rate and mean nuclei number of porcine embryos between 10 and 20% FBS concentrations in culture medium. 3. IVF-derived porcine embryos co-cultured with mouse or porcine embryonic fibroblast cells showed a lower development to the blastocyst stage than those without co-culture system. Consequently, the present study suggests that high concentration of BSA as a protein source in culture medium suppresses development potential of porcine embryos produced In vitro. In addition, co-culture with somatic cells is not effective on in vitro development of IVF-derived porcine embryos to blastocyst stage.

  • PDF

Ambient CO2 Measurement Using Raman Lidar (라만 라이다를 이용한 대기 중 이산화탄소 혼합비 측정)

  • Kim, Daewon;Lee, Hanlim;Park, Junsung;Choi, Wonei;Yang, Jiwon;Kang, Hyeongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1187-1195
    • /
    • 2019
  • We, for the first time, developed a Raman lidar system which can remotely detect surface CO2 volume mixing ratio (VMR). The Raman lidar system consists of the Nd: YAG laser of wavelength 355 nm with 80 mJ, an optical receiver, and detectors. Indoor CO2 cell measurements show that the accuracy of the Raman lidar system is calculated to be 99.89%. We carried out the field measurement using our Raman lidar at Pukyong National University over a seven-day period in October 2019. The results show good agreement between CO2 VMRs measured by the Raman lidar (CO2 Raman Lidar) and those measured by in situ instruments (CO2 In situ) which located 300 m and 350 m away from the Raman lidar system. The correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) between CO2 In situ and CO2 Raman Lidar are 0.67, 2.78 ppm, and 3.26 ppm, respectively.