• Title/Summary/Keyword: 평균절삭력

Search Result 26, Processing Time 0.023 seconds

A Study on the Improvement of Surface Waviness by Cutting Force Control (밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구)

  • 오준호;정충영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.206-214
    • /
    • 1988
  • To improve the surface waviness in the peripheral milling, the feedrate is controlled so that the cutting force measured in the normal direction to the workpiece is constant. A discrete time first order model between the feedrate and the tool deflection is derived for the control. It has been shown by the analysis that the tool deflection is directly related to the feedrate and largely affects the surface waviness during cutting. The experimental results shown that the surface waviness is drastically improved by the proposed methods.

Development of mean specific cutting pressure model for cutting force analysis in the face milling process (정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발)

  • Lee, B.C.;Hwang, J.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-25
    • /
    • 1994
  • In order to design and improve a new machine tool, there is a need for a better understanding of the cutting force. In this paper, the computer programs were developed to predict not only the mean specific cutting pressure but also the cutting force. The simulated cutting forces in X, Y, Z directions resulted form the developed cutting force model were compared with the measured cutting forces in the time and frequency domains. The simulated cutting forces resulted from the new cutting force model have a good agreement with the measured force in comparison with these resulted from the existing cutting force model.

  • PDF

Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map (볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측)

  • 김규만;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF

Development of Dynamic Cutting Force Model by Mean Specific Cutting Pressure in Face Milling Process (평균 비절삭저항을 이용한 정면 밀리의 동절삭력 모델 개발)

  • Lee, Byung-Cheol;Baek, Dae-Kyun;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.39-52
    • /
    • 1995
  • In order to design and improve a new machine tool, there is a need for a better understanding of the dynamic cutting force. In this paper, the computer programs were developed to predict the dynamic cutting force by the mean specific cutting pressure in the face milling process. The simulated cutiing forces in X, Y, Z directions resulted from the developed dynamic cutting force model are compared with the measured cutiing forces in the time and frequency domains. The simulated cutting force model have a good agreement with the measured forces in comparison with those resulted from the existing cutting force model.

  • PDF

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

Ball end milling of sculptured surface models by considering machinability (절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구)

  • 박천경;맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2048-2061
    • /
    • 1991
  • As compared with other cutting types, the ball end milling process causes a complexity in cutting system and a falling-off of machinability. In order to increase the productivity and efficiency in th NC machining of sculptured surfaces, this study carried out the qualitative linearized evaluation about the ball end milling system and applied their practical expressions to the technological processor at the cutter path planning stage. The evaluated expressions were proved to be adequate for practical use from an accuracy point of view and the estimation models were applied to sculptured surface machining processes for finding variable machining conditions. Consequently, it was recognized that variable machining conditions bring about the dispersion of force system and the reduction of machining time by more than 50%.

Adaptive force regulation system in the milling process by current monitoring (전류감시를 이용한 밀링공정에서의 절삭력적응제어시스템)

  • 안동철;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.690-694
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes, a feedrate override Adaptive Control Constant system was developed. This paper presents an explicit pole-assignment PI-control law through spindle motor current monitoring and its application to cutting force regulation for feedrate optimization. An experimental set-up is constructed for the commercial CNC machining center without any major changes of the structure. A data transfer system is constructed with standard interface between an IBM compatible PC and a CNC of the machining center. Experimental results show the validity of the system.

  • PDF

Performance estimation depending on the insert size of conical picks by linear cutting test (선형절삭시험에 의한 코니컬커터의 삽입재 크기에 따른 절삭성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Cheol-Ho;Lee, Gyu-Phil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.221-233
    • /
    • 2016
  • In order to estimate the performance of a conical cutter depending on the insert size, this study measured forces acting on conical cutters with different cutter spacings, penetration depths and skew angles using slim and heavy conical cutters. When cutter spacings ranged from 12 to 27 mm, the deviations of mean cutter forces with cutter depths appeared smaller compared to other cutter spacings. When skew angle is $0^{\circ}$, the optimal S/d ratio was obtained in the range of 4 to 4.5 for which specific energy of cutting was minimized. It were usually found in the range of 1 to 5. However, when skew angle is $6^{\circ}$, the optimal S/d ratio was obtained in the range of 1 to 3. The simple comparison results shows that the performance of slim cutter was superior to that of heavy cutter, but the use of heavy cutter can be effective, considering the cutter consumption and cutter damage when the strength of the ground is high enough.

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF