• Title/Summary/Keyword: 평균절대오차

Search Result 274, Processing Time 0.032 seconds

이원배치모형에서 급내상관계수의 추정

  • 이장택
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.327-338
    • /
    • 1998
  • 이원배치모형에서 급내상관계수에 대한 점 추정문제가 고려된다. 급내 상관계수에 대한 여러 가지 점추정량의 종류를 살펴보고 추정량의 평균자승오차(MSE)과 절대편의를 모의 실험을 통하여 서로 비교하여 본다. 결론적으로 이원배치모형에서의 급내 상관계수는 추정량의 종류에 큰 영향을 받지 않는 것으로 나타났으며, 따라서 계산량이 다른 추정량들에 비하여 적은 헨더슨의 방법 $\textrm{III}$ 추정량을 사용하는 것이 바람직한 것으로 판명되었다.

  • PDF

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

A Study on the Assessment of Right-tail Prediction Ability of Extreme Distributions using Simulation Experiment (모의 실험을 이용한 Right-tail quantiles의 극치 분포형 비교 평가에 관한 연구)

  • Jung, Jinseok;Kim, Taereem;Song, Hyun-Keun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.158-158
    • /
    • 2016
  • 본 연구에서는 극치 분포의 오른쪽 꼬리 부분 예측 시 안정적인 확률수문량 산정하는 확률분포형과 매개변수 추정 방법을 평가하기 위해 Monte Carlo 모의를 수행하였다. 수문자료의 빈도해석에 적합한 것으로 알려진 generalized extreme value (GEV), Gumbel (GUM), generalized logistic (GLO), gamma3 (GAM3), normal (NOR), log-normal3 (LN3) 총 6개의 확률분포형을 바탕으로 오른쪽 꼬리 부분의 확률수문량 추정 성능을 모의 실험을 통해 평가하고자 한다. 30년 이상 자료를 보유한 기상청 지점의 지속기간별 연최대값 자료를 분석한 결과를 바탕으로 모분포를 GEV분포로 선정하였으며 평균이 1.0, 표준편차 0.5, 왜곡도 계수는 0.5, 1.0, 2.0, 3.0, 4.0이 되도록 가정하였다. 또한 자료 길이에 따른 성능 평가를 위해 표본 크기 20, 50, 100, 150, 200개에 대해 분석을 수행하였다. 위와 같은 가정으로 총 25종류(왜곡도계수 5개 ${\times}$ 표본 크기 5개)의 발생된 모분포에 6가지의 확률분포형과 3가지의 매개변수 추정방법(모멘트법, 최우도법, 확률가중모멘트법)을 조합한 18가지의 모델을 비교 분석해보았다. 평가방법으로는 평균 제곱근 오차(Root Mean Square Error, RMSE), 편의(bias), 평균 상대오차(Mean Relative Difference, MRD), 평균 절대 상대오차(Mean Absolute Relative Difference, MARD)를 사용하여 적용 모델의 성능을 비교 분석하였다.

  • PDF

Georegistration of Airborne LiDAR Data Using a Digital Topographic Map (수치지형도를 이용한 항공라이다 데이터의 기하보정)

  • Han, Dong-Yeob;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.323-332
    • /
    • 2012
  • An airborne LiDAR system performs several observations on flight routes to collect data of targeted regions accompanying with discrepancies between the collected data strips of adjacent routes. This paper aims to present an automatic error correction technique using modified ICP as a way to remove relative errors from the observed data of strip data between flight routes and to make absolute correction to the control data. A control point data from the existing digital topographic map were created and the modified ICP algorithm was applied to perform the absolute automated correction on the relatively adjusted airborne LiDAR data. Through such process we were able to improve the absolute accuracy between strips within the average point distance of airborne LiDAR data and verified the possibility of automation in the geometric corrections using a large scale digital map.

Proposal of a Monitoring System to Determine the Possibility of Contact with Confirmed Infectious Diseases Using K-means Clustering Algorithm and Deep Learning Based Crowd Counting (K-평균 군집화 알고리즘 및 딥러닝 기반 군중 집계를 이용한 전염병 확진자 접촉 가능성 여부 판단 모니터링 시스템 제안)

  • Lee, Dongsu;ASHIQUZZAMAN, AKM;Kim, Yeonggwang;Sin, Hye-Ju;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • The possibility that an asymptotic coronavirus-19 infected person around the world is not aware of his infection and can spread it to people around him is still a very important issue in that the public is not free from anxiety and fear over the spread of the epidemic. In this paper, the K-means clustering algorithm and deep learning-based crowd aggregation were proposed to determine the possibility of contact with confirmed cases of infectious diseases. As a result of 300 iterations of all input learning images, the PSNR value was 21.51, and the final MAE value for the entire data set was 67.984. This means the average absolute error between observations and the average absolute error of fewer than 4,000 people in each CCTV scene, including the calculation of the distance and infection rate from the confirmed patient and the surrounding persons, the net group of potential patient movements, and the prediction of the infection rate.

Application of Response Surface Analysis for Predicting Moisture Content of Binary Mixture (다중 회귀분석에 의한 이상혼합물(二相混合物)의 수분함량 예측)

  • Yoon, Heeny H.N.;Kim, H.;Shin, Y.D.;Yoo, M.Y.
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.82-87
    • /
    • 1986
  • The water sorption isotherms of binary mixtures, prepared by corn starch and isolated soybean protein (ISP) or casein, were measured and analyzed. Simple equations to predict moisture content from knowledge of composition and water activity of the mixture were derived by applying Response Surface Analysis. Comparison between predicted and experimental moisture content for 13 combinations of corn starch-lSP mixture at the range of $a_w$ 0.25-0.87 resulted in a maximum error of only 6.06% and an absolute mean error of 2.60%, and for the mixture of corn starch-casein the error was -4.39% and 2.12%, respectively. The agreement between experimental and predicted water sorption isotherms was shown to be 'highly acceptable' for the binary mixtures of 50% corn starch-50% ISP and 50% corn starch -50% casein.

  • PDF

Fast Black Matching Algorithm Using The Lower and Upper Bound of Mean Absolute Difference (블록 평균 절대치 오차의 최소 및 최대 범위를 이용한 고속 블록 정합 알고리듬)

  • 이법기;정원식;이경환;최정현;김경규;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1401-1410
    • /
    • 1999
  • In this paper, we propose a fast block matching algorithm using the lower and upper bound of mean absolute difference (MAD) which is calculated at the search region overlapped with neighbor blocks. At first, we calculate the lower bound of MAD and reduce the search point by using this lower bound. In this method, we can get good prediction error performance close to full search block matching algorithm (FSBMA), but there exists some computational complexity that has to be reduced. Therefore, we further reduce the computational complexity by using pixel subsampling besides the lower and upper bound of MAD. Experimental results show that we can remarkably reduce the computational complexity with good prediction error performance close to FSBMA.

  • PDF

Analysis and Forecasting of Daily Bulk Shipping Freight Rates Using Error Correction Models (오차교정모형을 활용한 일간 벌크선 해상운임 분석과 예측)

  • Ko, Byoung-Wook
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.129-141
    • /
    • 2023
  • This study analyzes the dynamic characteristics of daily freight rates of dry bulk and tanker shipping markets and their forecasting accuracy by using the error correction models. In order to calculate the error terms from the co-integrated time series, this study uses the common stochastic trend model (CSTM model) and vector error correction model (VECM model). First, the error correction model using the error term from the CSTM model yields more appropriate results of adjustment speed coefficient than one using the error term from the VECM model. Furthermore, according to the adjusted determination coefficients (adjR2), the error correction model of CSTM-model error term shows more model fitness than that of VECM-model error term. Second, according to the criteria of mean absolute error (MAE) and mean absolute scaled error (MASE) which measure the forecasting accuracy, the results show that the error correction model with CSTM-model error term produces more accurate forecasts than that of VECM-model error term in the 12 cases among the total 15 cases. This study proposes the analysis and forecast tasks 1) using both of the CSTM-model and VECM-model error terms at the same time and 2) incorporating additional data of commodity and energy markets, and 3) differentiating the adjustment speed coefficients based the sign of the error term as the future research topics.

Application of 2-pass DInSAR to Improve DEM Precision (DEM 정밀도 향상을 위한 2-pass DInSAR 방법의 적용)

  • 윤근원;김상완;민경덕;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In 2-pass differential SAR interferometry(DInSAR), the topographic phase signature can be removed by using a digital elevation model(DEM) to isolate the contribution of deformation from interferometric phase. This method has an advantage of no unwrapping process, but applicability is limited by precision of the DEM used. The residual phase in 2-pass differential interferogram accounts for error of DEM used in the processing provided that no actual deformation exits. The objective of this paper is a preliminary study to improve DEM precision using low precision DEM and 2-pass DInSAR technique, and we applied the 2-pass DInSAR technique to Asan area. ERS-1/2 tandem complex images and DTED level 0 DEM were used for DInSAR, and the precision of resulting DEM was estimated by a 1:25,000 digital map. The input DEM can be improved by simply adding the DInSAR output to the original low precision DEM. The absolute altitude error of the improved DEM is 9.7m, which is about the half to that of the original DTED level 0 data. And absolute altitude error of the improved DEM is better than that from InSAR technique, 15.8m. This approach has an advantage over the InSAR technique in efficiently reducing layover effects over steep slope region. This study demonstrates that 2-pass DInSAR can also be used to improve DEM precision.

A Study of New Modified Neyman-Scott Rectangular Pulse Model Development Using Direct Parameter Estimation (직접적인 매개변수 추정방법을 이용한 새로운 수정된 Neyman-Scott 구형펄스모형 개발 연구)

  • Shin, Ju-Young;Joo, Kyoung-Won;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Direct parameter estimation method is verified with various models based on Neyman-Scott rectangular pulse model (NSRPM). Also, newly modified NSRPM (NMSRPM) that uses normal distribution is developed. Precipitation data observed by Korea Meteorological Administration (KMA) for 47 years is applied for parameter estimation. For model performance verification, we used statistics, wet ratio and precipitation accumulate distribution of precipitation generated. The comparison of statistics indicates that absolute relative error (ARE)s of the results from NSRPM and modified NSRPM (MNSRPM) are increasing on July, August, and September and ARE of NMNSRPM shows 10.11% that is the smallest ARE among the three models. NMNSRPM simulates the characteristics of precipitation statistics well. By comparing the wet ratio, MNSRPM shows the smallest ARE that is 16.35% and by using the graphical analysis, we found that these three models underestimate the wet ratio. The three models show about 2% of ARE of precipitation accumulate probability. Those results show that the three models simulate precipitation accumulate probability well. As the results, it is found that the parameters of NSRPM, MNSRPM and NMNSRPM are able to be estimated by the direct parameter estimation method. From the results listed above, we concluded that the direct parameter estimation is able to be applied to various models based on NSRPM. NMNSRPM shows good performance compared with developed model-NSRPM and MNSRPM and the models based on NSRPM can be developed by the direct parameter estimation method.