• Title/Summary/Keyword: 평균입자

Search Result 1,278, Processing Time 0.027 seconds

Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation (하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토)

  • Donghyun Kim;Sunghyun Bae;Seongmin Kim;Seongsoo Han;Yosep Han;Gi Woon Kwon
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.48-56
    • /
    • 2024
  • In this study, physical property evaluation and physical separation of the target product were performed to investigate the possibility of using sewage sludge gasification solid residue (GSRs) as a circulating resource. Firstly, the GSRs used in this study was supplied by Sudokwon Landfill Management Corporation, and generally the GSRs was in the form of porous pellets with a particle size of several millimetres. In addition, the partially black areas were confirmed to be unburned and ungasified carbon, and the average carbon content was 5%. In addition, the content of silica, alumina and phosphorus oxide was more than 70% of the total content. It was confirmed that the metallic components of the wet grinding product were separated into individual elements. As a physical separation of metallic and non-metallic components was required, it was finally found that flotation screening was suitable. Accordingly, cationic and anionic surfactants were selected to separate metallic components in which a relatively large amount of non-metallic components were concentrated, and the separation characteristics were confirmed. As a result, it is expected that the concentration of non-metallic components such as silica, alumina and phosphorus will be easier than the separation of metallic components. Therefore, since it is possible to physically treat the gasified sludge residue, it is judged to have potential as a circular resource according to the proposed recycling method for the separated product.

Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter (토크 측정과 시차주사열량계를 이용한 수용성 고분자 화합물의 하이드레이트 저해 성능 평가)

  • Shin, Kyuchul;Park, Juwoon;Kim, Jakyung;Kim, Hyunho;Lee, Yohan;Seo, Yongwon;Seo, Yutaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.814-820
    • /
    • 2014
  • In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP ${\mu}$-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP ${\mu}$-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP ${\mu}$-DSC.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.

EMC and Unit Loads of Pollutants Generated from Tomato Cultivation during Rainfall (강우시 시설재배지역의 오염물질 유출 EMC 및 원단위 산정)

  • Jeon, Je Chan;Kwon, Koo Ho;Lee, Sang Hyeub;Lee, Jea Woon;Gwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.555-566
    • /
    • 2013
  • Total maximum daily load enforced in 2004 is a program to evaluate the amount of pollutants by each land use type and manage to meet a target water quality of each waterbody. The many research to calculate runoff load of pollutants by landuse type have been studied. This study was conducted to calculate pollutants EMC, load and unit load in stormwater runoff generated from tomato growing area. Monitoring was conducted about 32 event during 4years and water quality parameters such as BOD, $COD_{Mn}$, TOC, TSS, TN, TP, $NH_3-N$, $NO_3-N$, $PO_4-P$ were analyzed at the laboratory. The average EMC were measured as follows: 9.6 BOD mg/L, 17.2 $COD_{Mn}$ mg/L, 5.5 TOC mg/L, 319.4 TSS mg/L, 4.4 T-N mg/L, 2.6 T-P mg/L, 0.5 $NH_3-N$ mg/L, 0.04 $NO_2-N$ mg/L, 2.6 $NO_3-N$ mg/L, 0.8 $PO_4-P$ mg/L. TN and TP is dichargeed as $NO_3-N$ and particle phosphorus type, respectively.

Statistical Analyses of Long-Term Water Quality Variation in the Geumgang-Reservoir: Focused on the TP Load by Migrating Birds Excrement (금강호의 장기 수질 변화요인 분석: 철새배설물에 의한 TP부하의 중요성)

  • Jeong, Yong-Hoon;Kim, Hyun-Soo;Yang, Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.223-233
    • /
    • 2010
  • Spatio-temporal variations of long-term water qualities (COD, SS, $Chl-{\alpha}$, N-related nutrients (TN, TDN, $NO_3^-$, $NH_4^+$), P-related nutrients (TP, TDP, $PO_4^{3-}$)) at two stations (St. SD, St. GG) in the Geumgang Reservoir were investigated from August 2001 to July 2008. Statistical methods such as t-test, factor analysis, and multi-regression analysis were applied to the water quality data in the reservoir as well as mass balances on TP. From the temporal comparisons of the water qualities between 2002 and 2007, average concentrations of $NH_4^+$, $PO_4^{3-}$, and TDP gradually decreased down by 60%, 24%, 52% in 2007. However, those of TP and $Chl-{\alpha}$ increased to 99% and 423% during the period. From the spatial comparisons between the two stations, St. GG showed higher concentrations for all of the N- and P-related nutrients than in St. SD, while opposite result for the $Chl-{\alpha}$. The factor analysis showed that "the seasonal variations of N- and P-related nutrients" were the two dominant factors occupying 49% of total variances of water qualities. Based on this result, multi-regression analysis executed for the two most influential parameters (TP and $Chl-{\alpha}$) focusing on the seasonal variations of these parameters: SS and $Chl-{\alpha}$ has contributed decisively to the concentrations of TP during the wet and dry season, respectively. On the other hand, COD and TP has been important for the $Chl-{\alpha}$ during the wet and dry season, respectively. From the established mass balances of TP loadings in the Geumgang Reservoir, Other Sources (60%) occupied the greatest contribution and Fluvial Input (38%) and Sediment (1%) during the wet season. However, both Fluvial Water (48%) and Other Sources (47%) supplied comparable amount of inputs and Sediment (5%) showed significantly increased input during the dry seasons. Recently especially during the dry winter seasons, migrating bird's excretion was estimated to contribute up to 8% of total TP input and 21% of Other Sources.

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.

Effects of Indoor Greening Method on Temperature, Relative Humidity and Particulate Matter Concentration (실내녹화 방법이 온·습도 및 미세먼지 농도에 미치는 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated indoor temperature and humidity control and PM1 and PM10 mitigation effects of a single green wall (Case 1), two green walls (Case 2), and two green walls plus a waterfall (Case 3) in comparison with a control without either a green wall or waterfall. Experiments were conducted in the office of Chungbuk National University from August to September, 2015. Experiments were carried out sequentially in the order of control, Case 1, Case 2, and Case 3. Data collected from August 17 to August 20, 2015 (Experiment 1), and from August 31 to September 3, 2015 (Experiment 2), when outdoor temperature was relatively constant, were analyzed. Plant volume ratios by indoor landscaping of the control, Case 1, Case 2 and Case 3 were 0.0, 0.6, 1.2, and 1.4%, respectively. Compared to the control, average temperatures of Case 1, Case 2 and Case 3 were decreased by 0.3~0.7, 0.7~0.9 and $1.0^{\circ}C$, respectively, and relative humidity was increased by 1.8~8.7, 9.2~14.6 and 14.8~21.9%, respectively. Three hundred minutes after exposure to mosquito repellent incense particles, the ratio of the remaining PM1 of the control, Case 1, Case 2 and Case 3 were 25.0, 22.0%, 21.2%, 17.3%, respectively, in Experiment 1 and 42.3, 28.9, 23.1, and 30.9%, respectively, in Experiment 2. As indoor greening increased the effect of indoor temperature, PM1 and PM10 mitigation were greater, and temperature and humidity were lower. The greater the relative humidity was, the faster PM1 and PM10 mitigation tended to be.

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

Seagrass (Zostera marina L., Zosteraceae) Bed in the Brackish Lake Hwajinpo, Korea (화진포 기수호에 해산식물 거머리말 (Zostera marina L., Zosteraceae))

  • Lee, Sang-Yong;Kwon, Chun-Joong;Heo, Sung;Choi, Chung-Il
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.336-341
    • /
    • 2000
  • This study was conducted to clarify the habitat characteristics and distribution of seagrass. Zostera marina L. (Zosteraceae) in the brackish Hwajinpo Lake, Korea in June 1998 and July 2000. Z. marina beds were distributed along the sea-side cost of the lower lake mouth at 0.8 to 1.5m in death, and the seagrass bed area was about 3,200 m$^{2}$. Salinity, water temperature and pH were in the range of 8.0${\sim}$23.0$%_{o}$, 22.0${\sim}$23.7$^{\circ}C$ and 8.34${\sim}$8.62, respectively. Nutrient concentrations were generally now (TN: 24.34 ${\mu}$M, NH$_{4}$-N: 2.57 ${\mu}$M, NO$_{3}$-N: 0.56 ${\mu}$M, NO$_{2}$-N: 0.27 ${\mu}$M, TP: 2.08 ${\mu}$M, PO$_{4}$-P: 0.34 ${\mu}$M). Suspended particulate matters (SPM) concentration averaged 62.8 mg/l and particulate organic matter (POM) averaged 21.3 mg/l. Organic content of SPM averaged 33.9%. The beds substratum was composed of well-sorted, fine sand and its mean brain size was 3.13${\Phi}$. The Z. marina vegetation was almost submerged, and the morphological characteristics can be classified as steno-leaf phenotype by the shoot length, leaf width, and number of leaf vein. Shoot length and leaf width were 70.0${\sim}$126.5 cm and 5${\sim}$7 mm, respectively. Shoot densities ranged from 264 to 296/m$^{2}$, and the plants biomass was estimated at 332.6 to 373.0 g dw/m$^{2}$. Therefore, the habitats of Z. marina in Korea were recognized in a brackish lake, and morphological characteristics appeared to be variable.

  • PDF