We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.
Proceedings of the Korea Information Processing Society Conference
/
2000.04a
/
pp.1071-1076
/
2000
워터마킹은 소유권을 주장하기 위하여 '워터마크'라고 불리는 신호를 눈에 보이지 않게 영상에 첨가하는 것이다. 본 논문에서는 웨이브릿 변환 영역에서 이웃한 계수 쌍의 차이와 평균을 이용한 워터마킹 기법을 제안한다. 제안한 방법에서는 영상을 1계층의 웨이브릿 변환 영역으로 변환한 다음, 이진 도장 영상으로 된 워터마크를 첨가할 이웃한 계수 쌍을 기저 대역에서 선택한다. 워터마크 첨가를 위하여 도장 영상의 이름이 새겨진 부분에 대하여 해당 웨이브릿 계수 쌍의 대소 관계를 반전시킨다. 이러한 방법은 워터마크를 직접 첨가하는 방법에 비하여 손실 압축 및 다양한 영상 처리 등의 공격에 강인하다. 또한 대소 관계를 반전시키는 과정에서 이웃 계수 쌍의 평균과 차이를 구하여, 차이에 반비례하는 일정한 값을 평균에 더함으로써 주관적인 화질의 저하를 줄인다. 실험 결과 제안한 방법은 44 dB 정도의 우수한 화질에서 손실 JPEG 압축, 잡음 첨가, 클리핑, 블러링 등의 공격에 강인함을 알 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.165-165
/
2018
이상기후로 인한 일강우량의 경신이 빈번하게 발생함에 따라 홍수피해 위험이 증가하고 있다. 최근 해안지대와 근접한 제주시와 서귀포시 도심부근에서 200 mm 이상의 일강우량이 빈번하게 발생하고 있으며, 한라산 정상 부근에서 500 mm 이상의 강우 발생빈도도 증가하고 있다. 특히, 2014년에 발생한 태풍 '나크리'는 기상청 관측 사상 최대인 1,500 mm의 일강우량을 기록하는 등 호우재해로 인한 피해 위험도가 증가하고 있다. 호우재해로 인한 홍수피해를 저감시키기 위해서는 정확한 홍수량 산정을 통한 계획수립이 매우 중요하다. 홍수량 산정 시 필수조건인 강우자료는 면적 개념의 면적평균 강우량이 필요하며 대표적 방법으로 티센다각형법이 있다. 티센다각형법은 현재 실무에서 가장 많이 사용되는 방법으로 쉽게 산정할 수 있으나 고도에 따른 강수 변화를 고려하지 못하는 단점이 있다. 이에 따라 제주도와 같은 산악지형에 적합한 방법을 고려하기 위하여 등우선법을 활용한 면적평균 강우량 산정 후 티센다각형법과 비교하였다. 티센다각형법은 관측소마다 관측된 강우량에 관측소 주위로 작도한 티센다각형의 면적 비를 가중치로 부여하는 방법으로 빠른 시간 안에 면적평균 강우량을 산정할 수 있는 반면, 등우선법은 등우선간 평균강우량에 등우선간 면적을 가중치로 부여하기 때문에 시간별 혹은 일별 등우선을 매번 작도해야 하는 점과 오랜 시간이 걸린다는 단점이 있다. 이에 따라 본 연구에서는 제주시 도심하천을 기준으로 티센다각형법과 등우선법 간 변환식을 개발하여 효율적인 면적평균 강우량 산정이 가능하도록 하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.577-579
/
2004
전원을 전적으로 배터리에 의존하는 모바일 임베디드 시스템은 배터리 용량의 한계 때문에 효율적인 에너지의 사용이 매우 중요하다. 특히 memory subsystem은 전체 system에서 소모되는 에너지에서 큰 비중을 차지한다. 이 논문은 성능 면에서 cache의 대안이 되고, cache보다 간단한 구조 때문에 전력소모가 훨씬 적은 on-chip scratch-pad memory(SPM)를 효율적으로 이용할 수 있는 소스 코드 변환 방법 및 SPM 관리방법을 제안한다. 각 함수 단위로 코드 변환을 하며, 어떤 변수를 SPM에 할당하기 위한 소스코드 변환을 했을 때, 소스코드 분석만으로 알 수 있는 변수의 정적인 참조 횟수를 가중치로 고려하여, 코드 변환 후 메모리 참조에 의한 실행 시간과 에너지 소모를 계산하고 이를 바탕으로 SPM에 할당한 변수를 결정한 다음 실제 그 코드 변환을 적용한다. 제안된 코드 변환은 컴파일러에 의해 자동화 될 수 있다. 10개의 임베디드 벤치마크 프로그램을 이용하여 본 논문에서 제안하는 방법의 성능 평가를 한 결과, 실행 시간은 평균 23% 향상되고 에너지 소모는 평균 49% 감소함을 알 수 있다.
One of main goals of time series analysis is to estimate prediction of future values. In this paper, we investigate the bias problem when the transformation and back- transformation approach is applied in ARMA models and introduce a modified smearing estimation to reduce the bias. An empirical study on the returns of KOSDAQ index via Yeo-Johnson transformation was executed to compare the performance of existing methods and proposed methods and showed that proposed approaches provide a bias-reduced estimation of the prediction value.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.182-184
/
2018
본 논문에서는 HDR 영상 신호의 고속 광전변환을 위한 파라미터 룩업 테이블 기반 구간 선형 근사 방법을 제안한다. 제안하는 방법은 고속화하기 위한 광전변환함수의 입력 값의 범위를 다수개의 구간으로 나누고 각 구간마다 별도의 선형 근사함수를 구하여 광전변환함수를 근사하고 각 구간별로 필요한 선형 근사함수의 파라미터를 룩업 테이블에 미리 저장하고 사용함으로써 보다 빠른 근사 값 계산이 가능하다. 제안한 방법의 성능 평가를 위해 MPEG 에서 제공하는 참조 소프트웨어인 HDRTools 를 기반으로 실험을 수행했고 이를 통해 참조 소프트웨어에 구현되어 있는 기존의 고속화 방법과 비교하여 더 적은 연산 수를 가지며 평균 24% 빠른 처리속도와 약 0.05dB 의 평균 PSNR 손실을 보임을 확인하였다.
One of main aspects of time series analysis is to forecast future values of series based on values up to a given time. The prediction interval for future values is usually obtained under the normality assumption. When the assumption is seriously violated, a transformation of data may permit the valid use of the normal theory. We investigate the prediction problem for future values in the original scale when transformations are applied in ARMA models. In this paper, we introduce the methodology based on Yeo-Johnson transformation to solve the problem of skewed data whose modelling is relatively difficult in the analysis of time series. Simulation studies show that the coverage probabilities of proposed intervals are closer to the nominal level than those of usual intervals.
Various time series representation methods have been proposed for efficient time series clustering and classification. Lin et al. (DMKD, 15, 107-144, 2007) proposed a symbolic aggregate approximation (SAX) method based on symbolic representations after approximating the original time series using piecewise local mean. The performance of SAX therefore depends heavily on how well the piecewise local averages approximate original time series features. SAX equally divides the entire series into an arbitrary number of segments; however, it is not sufficient to capture key features from complex, large-scale time series data. Therefore, this paper considers data-adaptive local constant approximation of the time series using the unbalanced Haar wavelet transformation. The proposed method is shown to outperforms SAX in many real-world data applications.
The Transactions of the Korea Information Processing Society
/
v.3
no.6
/
pp.1646-1657
/
1996
This paper presents a color transformation method based on a uniform color image model. Firstly, color variation factors are grouped into identical (multiplicative) factor and independent(additive) one for the color model, and they are modelled by the Gaussian function. The shape of a color cluster in (R, G, B) feature space is an ellipsoid whose elongated major axis correspond to the direction of mean vector. Secondly, the transformation of a color cluster using the model is studied. A transformation method for three dimensional coordinated is described. The proposed method is applied to artificial and natural color images. By the result of experiments, the elongated major axis of each cluster making up the transformed color image aggress with the direction of its mean vector.
In this paper, we introduce the method that reduces the bias when the transformation and back-transformation approach is applied in GARCH models. A parametric bootstrap is employed to compute the conditional expectation which is the prediction value to minimize mean square errors in the original scale. Through the analyese of returns of KOSPI and KOSDAQ, we verified that the proposed method provides a bias-reduced estimation for the prediction value.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.