• Title/Summary/Keyword: 평균레이놀즈 응력

Search Result 45, Processing Time 0.028 seconds

Improvement of Two-layer Model using Reynolds Stress Distribution of Vegetated Open-channel Flows (침수식생 개수로의 레이놀즈응력분포를 이용한 2층모형 개선)

  • Yang, Won-Jun;Choi, Sung-Uk;Choi, Byung-Woong;Bae, Hye-Deuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.515-519
    • /
    • 2010
  • 본 연구에서는 침수식생 개수로 흐름의 평균유속 및 다양한 난류량 예측이 가능한 해석적 모형의 비교 분석을 수행하였다. 각 모형의 비교분석에 사용한 수리실험자료는 기존의 다양한 연구자가 제시한 실험결과를 이용하였다. 레이놀즈응력의 경우, 상부영역에서는 선형분포를 가정한 두 모형 모두 수리실험자료와 잘 일치하였다. 그러나 식생영역의 경우 3층모형에서 가정한 지수함수 형태의 레이놀즈응력은 실험자료와 잘 일치하지 않는 것으로 나타났다. 평균유속의 경우, 삼층모형에서 새로이 추가된 내부식생영역은 전체적인 예측결과에 큰 영향을 미치지 않는 것으로 나타났지만, 전체적인 평균유속 예측결과는 두 모형 모두 비교적 유사하였다. 본 연구를 통하여 분석된 2층모형과 3층모형의 장점만을 취합하여 이층모형의 정확성을 개선하였다. 기존 수리실험자료를 이용하여 식생수로의 레이놀즈응력분포식을 최적화된 멱함수 형태로 제시하였다. 개발된 모형을 기존 수리실험자료에 적용한 결과 특정 조건을 제외하고는 비교적 정확하게 식생흐름의 평균유속분포를 예측하는 것으로 나타났으며, 이는 식생 및 흐름조건에 의해 식생영역의 레이놀즈응력분포형태가 왜곡되어있을 경우인 것으로 분석되었다.

  • PDF

Impact of Drag-Related Weighting Coefficients in Vegetated Open-Channel Flows (식생된 개수로에서 항력가중계수가 흐름에 미치는 영향 분석)

  • Kang, Hyeongsik;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.529-537
    • /
    • 2006
  • This paper investigates the impacts of the drag-related weighting coefficients on mean velocity and turbulence structures. The transport equations for the Reynolds stress of vegetated open-channel flows are derived by using the temporal- and horizontal-averaging scheme. It is found that the total Reynolds stress of vegetated open channel flows consists of the Reynolds stress due to temporally fluctuating velocities and the Reynolds stress due to spatially fluctuating velocities. The drag-related weighting coefficient $C_{fk}$ for the total Reynolds stress component is found to be unit, while the coefficient for the Reynolds stress due to temporally fluctuating velocities can be negligible. This is the reason why very small weighting coefficients in previous studies yield very good agreements with measured data. In other words, the Reynolds stress due to spatially fluctuating velocities remains still unknown, especially due to the large number of measuring locations. Through a developed Reynolds stress model, vegetated open-channel flows are simulated and compared with measured data from the literature. Comparisons reveal that the computed mean flow and Reynolds stress structures are hardly affected by the drag-related weighting coefficients. However, the computed turbulence intensity profiles are significant different with the drag-related weighting coefficients. A budget analysis of the transport equations for the Reynolds stress component is carried to investigate why turbulence intensity is affected by the drag-related weighting coefficients.

3D Numerical Simulations of Secondary Currents in a Trapezoidal Open-Channel Flows (사다리꼴 개수로 흐름에서 이차흐름의 차원 3차원 수치모의)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1631-1635
    • /
    • 2006
  • 본 연구에서는 레이놀즈응력모형(RSM: Reynolds Stress Model)을 이용하여 사다리꼴 개수로 흐름을 수치모의 하였다. 측벽 경사에 따른 사다리꼴 개수로 흐름을 수치모의 하였으며 계산된 평균유속 분포는 기존의 실험 결과와 비교하였다. 그 결과 개발된 레이놀즈응력이 사다리꼴 개수로 흐름을 비교적 잘 예측하는 것으로 나타났다. 또한 사다리꼴 수로에서는 직사각형 개수로 흐름과 달리 velocity dip 현상이 발생하지 않는 것으로 나타났다. 특히 측벽 경사가 32..인 사다리꼴 수로에서의 평균유속 및 바닥 전단응력 분포는 측벽 경사가 큰 경우와 다른 형태의 평균유속 및 전단응력 분포가 형성되는 것으로 나타났다.

  • PDF

Reynolds Shear Stress Distribution in Turbulent Channel Flows (난류 채널 유동 내부의 레이놀즈 전단 응력 분포)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.829-837
    • /
    • 2012
  • Direct numerical simulations were carried out for turbulent channel flows with $Re_{\tau}$ = 180, 395 and 590 to investigate the turbulent flow structure related to the Reynolds shear stress. By examining the probability density function, the second quadrant (Q2) events with the largest contribution to the mean Reynolds shear stress were identified. The change in the inclination angle of Q2 events varies with wall units in $y^+<50$ and with the channel half height in y/h > 0.5. Conditionally averaged flow fields for the Q2 event show that the flow structures associated with Reynolds shear stress are a quasi-streamwise vortex in the buffer layer and a hairpin-shaped vortex in the outer layer. Three-dimensional visualization of the distribution of high Reynolds shear stress reveals that the organization of hairpin vortices in the outer layer having a size of 1.5~3 h is associated with large-scale motions with high Reynolds shear stress in the outer layer.

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

3D Numerical Simulation of Partly Vegetated Open-Channel Flows Using Reynolds Stress Model (레이놀즈응력모형을 이용한 부분 식생된 개수로 흐름의 3차원 수치모의)

  • Kang Hyeongsi;Choi Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.429-433
    • /
    • 2005
  • 본 연구에서는 레이놀즈응력모형(RSM: Reynolds Stress Model)을 이용하여 부분 식생된 개수로 흐름을 수치모의 하였다. 부분 식생된 개수로 흐름에서의 평균유속 및 난류구조를 수치모의 하고 기존의 실험결과와 비교하였다. 그 결과 개발된 모형이 식생된 개수로 흐름을 매우 잘 예측하는 것으로 나타났다. 특히, 이차흐름 벡터도를 수치모의 한 결과 식생구간과 비식생 구간에서 방향이 서로 다른 새로운 이차흐름 구조가 형성되는 것으로 나타났다. 또한 주흐름방향으로의 최대유속이 비식생 영역의 수면 아래에서 발생되고, 식생 및 비식생 영역의 경계면에서 난류량이 최대 값을 갖는 것을 확인하였다.

  • PDF

3-D Numerical Simulation of Open-Channel Flows over Smooth-Rough Bed Strips (매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름의 3차원 수치모의)

  • Choi, Sung-Uk;Park, Moonhyeong;Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.573-581
    • /
    • 2006
  • This paper presents a turbulence modeling of the open-channel flows over smooth-rough bed strips. A Reynolds stress model is used for the turbulence closure. The simulated mean flow and turbulence structures are compared with the previously reported experimental data. Comparisons reveal that the developed Reynolds stress model successfully predicts the mean flow and turbulence structures of open-channel flows over smooth-rough bed strips. The computed flow vectors show cellular secondary currents, of which the upflow occurs over the smooth bed strip and the downflow over the rough bed strip. It is found that the cellular secondary currents affect the mean flow and turbulence structure. A budget analysis of the streamwise vorticity equation is also carried out to investigate the mechanism by which the secondary currents are generated.

Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model (비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk;Kim, Taejoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.813-820
    • /
    • 2014
  • This study presents a numerical modeling of mean flow and turbulence structures of partly-vegetated open-channel flows. For this, Reynolds-averaged Navier-Stokes equations with vegetation drag terms are solved numerically using the non-linear k-${\varepsilon}$ model. The numerical model is applied to laboratory experiments of Nezu and Onitsuka (2001), and simulated results are compared with data from measurement and computations by Kang and Choi's (2006) Reynolds stress model. The simulation results indicate that the proposed numerical model simulates the mean flow well. Twin vortices are found to be generated at the interface between vegetated and non-vegetated zones, where turbulence intensity and Reynolds stress show their maximums. The model simulates the pattern of the Reynolds stress well but under-predicts the intensity of Reynolds stress slightly.

A Study on the Turbulent Flow Characteristics in the Wake of Transom Sterns using PIV Method (동일입자추적기법을 이용한 트랜섬선미 후류 난류유동특성에 관한 연구)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.352-359
    • /
    • 2012
  • An experiment was carried out to figure out the turbulence flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at Re= $3.5{\times}10^3$, Re= $7.0{\times}10^3$. The angles of transom stern are $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively. The depth of wetted surface is 40mm from free surface. Strong turbulence intensity appears at the interaction between the flow separation of the bottom of a model and the free surface. This study provides statistic flow information such as turbulence intensity, Reynolds stress and turbulence kinetic energy. Model C type (Raked transom) has low Reynolds stress and turbulence kinetic energy.

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].