KIPS Transactions on Software and Data Engineering
/
v.10
no.9
/
pp.375-384
/
2021
Deep learning techniques have been proven to have high performance in image processing and are applied in various fields. The most widely used methods for validating a deep learning model include a holdout verification method, a k-fold cross verification method, and a bootstrap method. These legacy methods consider the balance of the ratio between classes in the process of dividing the data set, but do not consider the ratio of various features that exist within the same class. If these features are not considered, verification results may be biased toward some features. Therefore, we propose a deep learning model validation method based on data feature coverage for image classification by improving the legacy methods. The proposed technique proposes a data feature coverage that can be measured numerically how much the training data set for training and validation of the deep learning model and the evaluation data set reflects the features of the entire data set. In this method, the data set can be divided by ensuring coverage to include all features of the entire data set, and the evaluation result of the model can be analyzed in units of feature clusters. As a result, by providing feature cluster information for the evaluation result of the trained model, feature information of data that affects the trained model can be provided.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.343-344
/
2023
과학기술 문헌을 활용한 계량정보분석에서 학과정보의 활용은 매유 유용하다. 본 논문에서는 한국과학기술인용색인데이터베이스에 등재된 국내 학술지 논문에 출현하는 대학기관 소속 저자의 학과정보를 추출하고 데이터 정제 및 학과유형 분류 처리를 통해 학과정보 데이터셋을 구축하였다. 학과정보 데이터셋을 학습데이터와 검증데이터로 이용하여 딥러닝 기반의 자동분류 모델을 구현하였으며, 모델 성능 평가 결과는 한글 학과정보 기준 98.6%와 영문 학과정보 기준 97.6%의 정확률로 측정되었다. 향후 과학기술 분야별 지적관계 분석 및 논문 주제분류 등에 학과정보 자동분류 처리기의 활용이 기대된다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.467-472
/
2021
본 연구는 패션앱 후기글에 나타나는 구매자의 의견에 대한 '평가분석(Evaluation Analysis: EA)'을 수행하여, 이를 기반으로 상품의 검색 및 추천을 수행하는 의류 검색추천 챗봇을 개발하는 LICO 프로젝트의 언어데이터 구축의 일환으로 수행되었다. '평가분석 트리플(EAT)'과 '평가기반요청 쿼드러플(EARQ)'의 구성요소들에 대한 주석작업은, 도메인 특화된 단일형 핵심어휘와 다단어(MWE) 핵심패턴들을 FST 방식으로 구조화하는 DECO-LGG 언어자원에 기반하여 반자동 언어데이터 증강(SSP) 방식을 통해 진행되었다. 이 과정을 통해 20여만 건의 후기글 문서(230만 어절)로 구성된 EVAD 평가주석데이터셋이 생성되었다. 여성의류 도메인의 평가분석을 위한 '평가속성(ASPECT)' 성분으로 14가지 유형이 분류되었고, 각 '평가속성'에 연동된 '평가내용(VALUE)' 쌍으로 전체 35가지의 {ASPECT-VALUE} 카테고리가 분류되었다. 본 연구에서 구축된 EVAD 평가주석 데이터의 성능을 평가한 결과, F1-Score 0.91의 성능 평가를 획득하였으며, 이를 통해 향후 다른 도메인으로의 확장된 적용 가능성이 유효함을 확인하였다.
대화형 독해 튜터링 시스템을 위한 학생주도 대화 데이터셋 생성 및 확장에 ChatGPT 의 활용 가능성을 평가하였다. 단순히 수동으로만 구축한 기존의 데이터셋과 ChatGPT 에 의해 반자동으로 확장된 데이터셋을 비교한 결과, 구축량, 소요 시간, 비용 및 반복 작업 측면에서 ChatGPT 가 가진 유용성을 알 수 있었다. 그러나, 유형별 배분의 편중과, 부적절한 데이터 생성 등의 한계도 나타났다. Chat GPT 의 빠른 발전이 예상됨에 따라 대화형 튜터링 분야에 ChatGPT 에 의한 반자동 데이터 확장 방법이 널리 활용될 것으로 기대된다.
Journal of Korean Tunnelling and Underground Space Association
/
v.24
no.6
/
pp.583-598
/
2022
As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.
Lee, Jeong-Rok;Lee, Dae-Woong;Jeong, Sae-Hyun;Jung, Sang
Proceedings of the Korean Society of Disaster Information Conference
/
2023.11a
/
pp.202-203
/
2023
최근 화재 탐지 분야는 불꽃 연기의 특징과 인공지능 인식(Detection) 모델을 활용하여 탐지율을 높이려는 연구가 많이 진행되어 왔다. 기존 화재 탐지 정확도를 높이기 위한 모델 연구 이외에도 불꽃·연기의 특징을 다양한 방법으로 데이터 가공한 학습 데이터셋을 활용하는 연구들이 진행되고 있다. 본 논문에서는 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안한다. 제안한 모델은 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하였다. 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.66-71
/
2021
본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.289-291
/
2013
As an wireless identification technology, RFID is now extending its application area including logistics, medicine, and healthcare. Adoption of RFID demands high cost such as h/w, s/w, and so on. To adopt RFID, we need to evaluate validity of application area and feasibility of RFID S/W such as EPC Information Service (EPCIS), which demands a variety of RFID test datasets. In this paper, I propose a novel method for generating RFID business events dataset by means of the simulation of RFID application environment. Proposed method can generate near-real RFID event dataset by means of representing various RFID application environment into abstract network model based on petri-net. In addition, it can also be useful when determining adoption of RFID as well as when evaluating RFID system.
The Journal of the Convergence on Culture Technology
/
v.8
no.2
/
pp.385-391
/
2022
Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.190-195
/
2023
의사소통 기술에서 유머는 사람을 웃게 만들며 분위기를 환기시키고, 관계를 돈독하게 만드는 효과를 지닌다. 이를 자연어처리에서 유머 분류, 인식, 탐지로 적용하여 유머를 기계에 학습시키려 하는 다양한 시도가 진행되고 있지만 유머의 주관성과 윤리적 문제로 탁월한 성능을 기록하기 어렵고, 특히 한국어 유머에 대한 자연어처리 분야의 논의는 미비한 상태이다. 이에 본 연구는 유머 평가 체계를 만들어 ChatGPT에 적용하여 유머 인식의 주관성을 극복할 수 있는 자동화 실험을 진행한다. 이때, 유머의 윤리적 문제를 보완하기 위해 한국 법률을 적용한 윤리 기준을 도입하여 유머 데이터셋을 마련하였으며, 데이터셋을 ChatGPT에 fine-tuning 하여 재미있는 생성 모델의 개발 가능성을 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.