• Title/Summary/Keyword: 평가연구

Search Result 71,976, Processing Time 0.101 seconds

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Development of a prototype simulator for dental education (치의학 교육을 위한 프로토타입 시뮬레이터의 개발)

  • Mi-El Kim;Jaehoon Sim;Aein Mon;Myung-Joo Kim;Young-Seok Park;Ho-Beom Kwon;Jaeheung Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • Purpose. The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice. Materials and methods. A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator's response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model. Results. The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model. Conclusion. Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.

Research on Making a Disaster Situation Management Intelligent Based on User Demand (사용자 수요 기반의 재난 상황관리 지능화에 관한 연구)

  • Seon-Hwa Choi;Jong-Yeong Son;Mi-Song Kim;Heewon Yoon;Shin-Hye Ryu;Sang Hoon Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.811-825
    • /
    • 2023
  • In accordance with the government's stance of actively promoting intelligent administrative service policies through data utilization, in the disaster and safety management field, it also is proceeding with disaster and safety management policies utilizing data and constructing systems for responding efficiently to new and complex disasters and establishing scientific and systematic safety policies. However, it is difficult to quickly and accurately grasp the on-site situation in the event of a disaster, and there are still limitations in providing information necessary for situation judgment and response only by displaying vast data. This paper focuses on deriving specific needs to make disaster situation management work more intelligent and efficient by utilizing intelligent information technology. Through individual interviews with workers at the Central Disaster and Safety Status Control Center, we investigated the scope of disaster situation management work and the main functions and usability of the geographic information system (GIS)-based integrated situation management system by practitioners in this process. In addition, the data built in the system was reclassified according to purpose and characteristics to check the status of data in the GIS-based integrated situation management system. To derive needed to make disaster situation management more intelligent and efficient by utilizing intelligent information technology, 3 strategies were established to quickly and accurately identify on-site situations, make data-based situation judgments, and support efficient situation management tasks, and implementation tasks were defined and task priorities were determined based on the importance of implementation tasks through analytic hierarchy process (AHP) analysis. As a result, 24 implementation tasks were derived, and to make situation management efficient, it is analyzed that the use of intelligent information technology is necessary for collecting, analyzing, and managing video and sensor data and tasks that can take a lot of time of be prone to errors when performed by humans, that is, collecting situation-related data and reporting tasks. We have a conclusion that among situation management intelligence strategies, we can perform to develop technologies for strategies being high important score, that is, quickly and accurately identifying on-site situations and efficient situation management work support.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System (세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가)

  • Hyeonjin Park;Jin-Kyung Cha;So-Myeong Lee;Youngho Kwon;Jisu Choi;Ki-Won Oh;Jong-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.188-196
    • /
    • 2023
  • Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.

Effects of Microbial Fermentation on the Antioxidant Activities of Protaetia brevitarsis Larvae (미생물 발효가 흰점박이꽃무지(Protaetia brevitarsis) 유충의 항산화 활성에 미치는 영향)

  • Han Bi Kim;Hye Soo Kim;Soo Jeong Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1052-1061
    • /
    • 2023
  • This study was carried out to evaluate the effect of fermentation by B. subtilis (BPLE), L. brevis (LPLE), S. cerevisiae (SPLE) and C. militaris (CPLE) on the antioxidant activity of Protaetia brevitarsis larvae fed with mushroom substrates (king oyster mushroom). The total polyphenol content of Protaetia brevitarsis larvae (PLE), BPLE, LPLE, SPLE and CPLE were 58.07±0.67, 83.33±0.98, 79.21±1.32, 61.02±0.87 and 57.90±1.02 mg GAEs/extract g, respectively. The flavonoid contents of the PLE, BPLE, LPLE, SPLE and CPLE were 17.35±1.57, 19.49±0.95, 16.90±1.57, 18.12±0.95 and 16.99±0.95 mg QEs/extract g, respectively. The DPPH radical scavenging activity showed no significant difference between the PLE, BPLE, LPLE, SPLE and CPLE at a concentration of 0.2 mg/ml. However, at a concentration of 0.4 mg/ml or more, the DPPH radical scavenging activity of the BPLE and LPLE was higher than that of the PLE. The reducing power of the BPLE and LPLE was also higher than that of the PLE, and more than twice as high at a concentration of 0.8 mg/ml or more. The ORAC value of the BPLE (79.77±0.82 uM TEs/extract g) was higher than that of the PLE (61.34±0.97 uM TEs/extract g). A WST-1 assay of the RAW 264.7 cells indicated that the PLE, BPLE, LPLE, SPLE and CPLE showed no cytotoxicity.

Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars (오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교)

  • Young Sang Joh;Shinwoo Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.129-141
    • /
    • 2023
  • Crop models have been used to predict yield under diverse environmental and cultivation conditions, which can be used to support decisions on the management of forage crop. Cultivar parameters are one of required inputs to crop models in order to represent genetic properties for a given forage cultivar. The objectives of this study were to compare calibration and ensemble approaches in order to minimize the uncertainty of crop yield estimates using the SIMPLE crop model. Cultivar parameters were calibrated using Log-likelihood (LL) and Generic Composite Similarity Measure (GCSM) as an objective function for Metropolis-Hastings (MH) algorithm. In total, 20 sets of cultivar parameters were generated for each method. Two types of ensemble approach. First type of ensemble approach was the average of model outputs (Eem), using individual parameters. The second ensemble approach was model output (Epm) of cultivar parameter obtained by averaging given 20 sets of parameters. Comparison was done for each cultivar and for each error calculation methods. 'Jowoo' and 'Yeongwoo', which are forage rice cultivars used in Korea, were subject to the parameter calibration. Yield data were obtained from experiment fields at Suwon, Jeonju, Naju and I ksan. Data for 2013, 2014 and 2016 were used for parameter calibration. For validation, yield data reported from 2016 to 2018 at Suwon was used. Initial calibration indicated that genetic coefficients obtained by LL were distributed in a narrower range than coefficients obtained by GCSM. A two-sample t-test was performed to compare between different methods of ensemble approaches and no significant difference was found between them. Uncertainty of GCSM can be neutralized by adjusting the acceptance probability. The other ensemble method (Epm) indicates that the uncertainty can be reduced with less computation using ensemble approach.

Analysis of Aminoglycoside Antibiotics in Meat and Cell Culture Medium Coupled with Direct Injection of an Ion-pairing Reagent (이온쌍 시약 직접 주입법을 활용한 육류 및 세포배양액 내 아미노글리코사이드계 항생제 분석)

  • Kyung-Ho Park;Song-Yi Gu;Geon-Woo Park;Jong-Jib Kim;Jong-soo Lee;Sang-Gu Kim;Sang-Yun Lee;Hyang Sook Chun
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.319-331
    • /
    • 2023
  • Aminoglycoside antibiotics, also known as aminoglycosides (AGs), are veterinary drugs effective against a wide range of gram-negative and gram-positive bacteria. Owing to their recent use in cultured meats, it has become essential to establish an analytical method for safety management. AGs are highly polar compounds, and ion-pair reagents (IPRs) are used to ensure component separation. Owing to the high possibility of potential mechanical problems resulting from IPR addition to the mobile phase, an analytical method in which IPRs are added directly to the vial was explored. In this study, methods for analyzing 10 AGs via liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the addition of two IPRs were validated for selectivity, detection limit, quantitation limit, recovery, and precision. The detection limit was 0.0001-0.0038 mg/kg, the quantification limit was 0.004-0.011 mg/kg, and the linearity (R2) within the concentration range of 0.01-0.5 mg/kg was over 0.99. Recovery and precision (expressed as relative standard deviation) evaluated in the two matrices (beef and cell culture media) ranged from 70.7% to 120.6% and 0.2% to 24.7%, respectively. The validated AG analytical method was then applied to 15 meats prepared from chicken, beef, and pork, and 6 culture media and additives used in cultured meat. No AGs were detected in any of the 15 meats distributed in Korea; however, streptomycin and dihydrostreptomycin were detected at levels ranging from 695.85 to 1152.71 mg/kg and 6.35 to 11.11 mg/kg, respectively, in the culture media additives. The LC-MS/MS method coupled with direct addition of IPRs to the vial can provide useful basic data for AG analysis and safety evaluation of meats as well as culture media and additives for cultured meats.

Comparison of Psychological factors affecting Happiness of the Korean elderly residing in USA and Korea (미국거주 한인노인과 국내노인 간 행복감의 차이 및 행복감에 영향을 주는 요인의 비교)

  • Juil Rie;Jeewon Cheong;Jungmee Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.5_spc
    • /
    • pp.169-203
    • /
    • 2006
  • The purpose of this study is to compare happiness between Korean elderly residing in South Korea and those residing in New York City area in United States (Korean American elderly), and to investigate important factors determining their happiness. We collected data from 1,988 elderly residing in Chuncheon and Seoul in South Korea and 173 elderly residing in New York City area. All samples were over 65 years old in 2005. In general, Korean American elderly seemed happier than Korean elderly. Our specific data analysis showed that Korean American elderly had higher scores in non-agitation, satisfaction for aging, and satisfaction for life than Korean elderly. And they showed secure attachment more and insecure attachment less than Korean elderly. Social support network, satisfaction in psychological need, health, daily routines, and social background predicted happiness significantly for both Korean American elderly and Korean elderly. For American Korean elderly, satisfaction in psychological need predicted satisfaction for aging, satisfaction for life, and secure attachment significantly when social background, health, and daily routine were controlled. For Korean elderly, satisfaction in psychological need predicted all sub-factors of happiness significantly, and social support network also predicted happiness significantly when social background, health, and daily routine were controlled. Additional data analysis compared social support network, satisfaction in psychological need, health, daily routine, and social background between Korean American elderly and Korean elderly. Korean American elderly seemed to have more solid social support network and to have higher satisfaction in psychological needs than Korean elderly. Korean American elderly perceived themselves as healthier, and their life style related health was much healthier than Korean elderly. In social background, Korean American elderly had higher education and economic level than Korean elderly. Roles of social support network and satisfaction in psychological need for happy aging were discussed in terms of previous theoretical explanation of successful aging.