• 제목/요약/키워드: 평가속성 가중치

검색결과 98건 처리시간 0.031초

정보이론과 신경망의 가중치를 이용한 속성선택 (Feature Selection Algorithm using Information theory and Neural Networks)

  • 조재훈;이대종;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.197-198
    • /
    • 2008
  • 본 논문에서는 신경망의 가중치와 정보이론을 이용한 속성선택 기법을 제안하였다. 제안된 방법은 정보이론의 상호정보량을 이용하여 각 속성들의 중요도를 평가한 후 중요도가 높은 속성들만을 선택하여 신경망의 입력으로 사용한다. 신경망의 입력으로 선택된 속성의 가중치에 대한 평가를 통하여 오차에 큰 영향을 미치는 속성들을 순차적으로 제거하여 가장 우수한 속성들을 구한다. 제안된 기법의 성능을 평가하기 위하여 다양한 패턴 분류 문제에 적용하고 그 성능이 우수함을 확인하였다.

  • PDF

사례기반 추론에서 사례별 속성 가중치 부여 방법 (A Case-Specific Feature Weighting Method in Case-Based Reasoning)

  • 이재식;전용준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

사례기반 추론을 위한 동적 속성 가중치 부여 방법 (A Dynamic feature Weighting Method for Case-based Reasoning)

  • 이재식;전용준
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.47-61
    • /
    • 2001
  • 사례기반 추론과 같은 사후학습 기법은 인공신경망이나 의사결정나무와 같은 사전학습 기법에 비해서 여러 장점을 가지고 있다. 하지만, 사후학습 기법은 사례 표현에 관련성이 적은 속성이 포함된 경우에는 성능이 저하되는 단점을 가지고 있다. 이러한 단점을 극복하기 위해서, 속성 가중치 부여 방법들이 연구되었다. 기존의 속성 가중치 부여 방법들은 대부분 전역적으로 속성 가중치를 부여하는 것이었다. 본 연구에서는 새로운 지역적 속성 가중치 부여 방법인 CBDFW를 제안한다. CBDFW 기법은 무작위로 생성된 속성 가중치들의 분류 성공 여부를 저장하고 있다가, 새로운 사례가 주어졌을 때에 성공적인 분류 결과를 보인 가중치들을 검색하여 동적으로 새로운 가중치들을 생성해낸다. 신용평가 데이터로 CBDFW의 성능을 실험한 결과, 기존의 연구들에서 제시된 분류 적중률보다 우수한 성능을 보였다.

  • PDF

소프트웨어 제품평가 및 선정 모형 (Evaluation and Selection Models for Software Products)

  • 정호원;오세원;안유환
    • 정보기술과데이타베이스저널
    • /
    • 제4권2호
    • /
    • pp.123-140
    • /
    • 1998
  • 동일하거나 유사한 기능을 수행하는 소프트웨어 제품들 중에서 사용자 요구사항에 가장 적합한 제품을 결정하기 위하여 측정과 평가 및 선정을 실시하는 것을 매우 중요한 일이다. 이러한 소프트웨어 제품의 평가와 선정은 대량 구매시 객관성 확보를 위해 특히 중요하다. 소프트웨어 제품의 평가를 위한 절차는 평가 대상 제품의 속성 결정과 측정, 속성의 중요도에 따른 가중치 부여, 그리고 평가와 선정 모형을 통한 최적제품의 선정이나 우선순위의 결정이다. 본 연구에서는 이러한 절차에 따른 가중치 부여 방법으로는 계층적 분석과정을 이용하고, 제품의 평가와 선정 방법으로는 4개 보상모형과 7개 비보상모형, 그리고 4개의 DEA(Data Evelopment Analysis)모형을 종합적으로 설명한다. 또한 본 연구에서는 위의 15개 평가와 선정모형을 사용하여 Infoworld(Jan.1997)에서 발표한 '문서 작업흐름 관리' 소프트웨어 제품의 속성에 대한 측정결과를 가지고 모형별 적용 결과를 분석한다.

  • PDF

메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현 (Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning)

  • 안현우;유해운;김대열
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

네트워크 분석과정을 적용한 가스하이드레이트 개발 사업의 기술향상도 평가 (Technology Improvement Assessment of Gas Hydrate R&D Project using Analytic Network Process)

  • 송승국;허은녕;이유아
    • 기술혁신학회지
    • /
    • 제14권1호
    • /
    • pp.60-84
    • /
    • 2011
  • 본 연구에서는 연구개발 사업에서 기술가치평가의 중요성 및 필요성을 인식하며, ANP(Analytic Network Process)기법을 적용하여 연구개발 사업으로 추진되고 있는 가스하이드레이트 개발 사업의 기술향상도를 평가하였다. ANP 방법은 요인들간의 상호 종속성 및 네트워크를 고려하여 연구개발 사업을 통해 개발된 기술의 가치를 평가 할 수 있다는 장점이 있다. 가스하이드레이트 개발사업의 기술향상도 평가를 위하여 사업의 4개 기술 분야 별 전문가의 자문 및 설문 결과를 바탕으로 기술향상도에 영향을 미치는 속성을 선정하였고, 각 속성 및 대안의 상호 종속성 관계를 고려한 네트워크 구조도를 도출하였다. ANP 기법을 적용하여 가중치 행렬을 도출한 결과 네트워크 구조도에서 보여지는 상호 관계를 확인할 수 있었다. 이러한 속성간 네트워크 관계는 기술가치평가에서 ANP 방법의 적용의 당위성을 제공해 준다. 기술향상도를 나타내는 요인의 극한 가중치 도출 결과에서는 모든 기술에서 실현 가능성이 가장 높게 평가되었다. 1위 이외에 다른 속성의 순위 및 기술향상도의 평가에서는 사업 수행 전 기술의 수준에 따라 영향을 받는 것으로 분석되었다.

  • PDF

엔트로피 가중치 및 SVD를 이용한 군집 특징 선택 (Cluster Feature Selection using Entropy Weighting and SVD)

  • 이영석;이수원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.248-257
    • /
    • 2002
  • 군집화는 객체들의 특성을 분석하여 유사한 성질을 갖고 있는 객체들을 동일한 집단으로 분류하는 방법이다. 전자 상거래 자료처럼 차원 수가 많고 누락 값이 많은 자료의 경우 입력 자료의 차원축약, 잡음제거를 목적으로 SVD를 사용하여 군집화를 수행하는 것이 효과적이지만, SVD를 통해 변환된 자료는 원래의 속성 정보를 상실하기 때문에 군집 결과분석에서 원본 속성의 가치 해석이 어렵다. 따라서 본 연구는 군집화 수행 후 엔트로피 가중치 및 SVD를 이용하여 군집의 중요한 속성을 발견하기 위한 군집 특징 선택 기법 ENTROPY-SVD를 제안한다. ENTROPY-SVD는 자료의 속성들과 유사객체 군과의 묵시적인 은닉 구조를 활용하기 위하여 SVD를 이용하고 유사객체 군에 포함된 응집도가 높은 속성들을 발견하기 위하여 엔트로피 가중치를 사용한다. 또한 ENTROPY-SVD를 적용한 모델 기반의 협력적 여과기법의 추천 시스템 CFS-CF를 제안하고 그 효용성 및 효과를 평가한다.

소프트컴퓨팅 기법을 활용하는 지능적인 반도체 수율 분류 시스템 (An intelligent system for semiconductor yield classification with soft computing techniques)

  • 이장희;하성호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제19권1호
    • /
    • pp.19-33
    • /
    • 2010
  • 생산 수율은 비선형관계를 지닌 여러 요인들에 의해 영향을 받기 때문에 반도체 생산의 경우 예측이 어렵다. 본 논문에서 저자들은 사례기반추론과 자기조직화신경망 기반의 데이터마이닝 기법을 활용하여 수율의 높고 낮음을 밝히는 지능화된 수율예측시스템을 제시한다. 이 시스템은 자기조직회신경망을 사용하여 생산 로트의 공정파라미터 패턴을 파악하고 속성가중치 기반의 사례기반추론을 통해 신규 로트의 수율 수준을 예측한다. 이때 속성가중치는 역전파인공신경망을 통해 계산된다. 웹기반 시스템이 개발되고, 반도체 생산 기업의 실제 자료를 적용하여 본 시스템의 효율을 검증하고 평가한다.

묵시적 평가정보를 이용한 사례기반추론 추천시스템 (A Recommender System using Case-based Reasoning with Implicit Rating Information)

  • 김병찬;옥수호;우용태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.139-141
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 개인별로 컨텐츠를 효과적으로 추천하기 위한 개인화 시스템모델을 제안하였다. 제안한 모델은 묵시적인 평가정보를 이용한 사례기반추론 기법으로서 협동적필터링 기법과 달리 유사집단의 평가정보를 이용하지 않고 개인별 속성에 대한 가중치와 속성 값을 이용하여 추천하는 기법이다. 이 기법은 각 사용자의 상품 추매 속성을 추천에 반영할 수 있는 장점이 있으며 사용자 프로파일을 이용하여 개인화된 추천이 가능하다. 제안한 기법이 Recall, Precision, F-measure의 평가 방법을 통해 실험한 결과 협동적필터링 기법 보다 모든 부분에서 더 좋은 결과가 나왔음을 볼 수 있다. 그러므로 제안 시스템이 유사 사용자의 평가정보를 이용한 협동적필터링 기법보다 효율적인 개인화 전략이 가능하다고 말 수 있다. 본 제안 모델을 이용하여 일대일 마케팅을 위한 eCRM 시스템 개발이 가능하리라 예상된다.

  • PDF

이산 속성 컨텍스트를 위한 시퀀스 매칭 기반 컨텍스트 예측 (Context Prediction based on Sequence Matching for Contexts with Discrete Attribute)

  • 최영환;이상용
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.463-468
    • /
    • 2011
  • 지금까지 컨텍스트 예측 방법들은 이산 속성 컨텍스트를 대상으로 예측을 수행한 경우와 연속 속성 컨텍스트를 대상으로 예측을 수행한 경우로 나뉘어서 발전되어 왔다. 대부분의 예측 방법들은 컨텍스트의 획득 환경이나 특성에 맞게 특정 도메인에서 각각 예측 알고리즘을 작성하여 사용하여 왔기 때문에, 다양한 환경과 특성을 갖는 사용자의 컨텍스트를 대상으로 예측을 수행하기가 어렵다. 본 논문에서는 특정 도메인이나 컨텍스트의 특성에 국한되지 않고 이산 속성이나 연속 속성 컨텍스트들에 모두 적용 가능한 컨텍스트 예측 방법을 제안한다. 이를 위해 컨텍스트 속성간의 연관규칙을 고려하여 컨텍스트를 시퀀스로 생성하고, 컨텍스트 속성별 가변 가중치를 적용시켜 시퀀스 매칭 기반의 컨텍스트 예측을 수행한다. 제안한 방법을 평가하기 위해 이산 속성 컨텍스트와 연속 속성 컨텍스트에 각각 시뮬레이션한 결과 이산 속성 컨텍스트에서 80.12%, 연속 속성 컨텍스트에서 81.43%의 예측 정확도로 기존 예측방법들과 비슷한 성능을 보였다.