분류기법을 통해 얻어진 원격탐사 자료는 사용되기 이전에 그 정확성에 관한 신뢰도 검증을 해야 한다. 분류 정확도를 평가하기 위해서는 오분류행렬(confusion matrix)을 사용하여 정확도 평가를 하게 되는데, 이때 오분류행렬을 구성하기 위해서는 기준자료(reference data)에 대한 표본추출이 이루어져야 한다. 기준자료의 표본을 추출하는 기법간의 비교 및 표본 크기를 줄이고자 하는 연구는 많이 이루어져 왔으난, 추출된 표본들간의 거리를 줄임으로써 정확도 평가 비용을 감소시키고자 하는 연구는 미미한 실정이다. 따라서, 본 연구에서는 프랙탈 분석을 통하여 기준자료의 표본을 추출하였으며, 이를 바탕으로 기존의 표본추출 기법과 정확도 차이 및 비용효과 측면을 비교 분석하였다. 연구 결과, 프랙탈 분석을 통하여 표본을 추출하는 기법은 그 정확도 추정에 있어 기존적 표본 추출 기법과 큰 차이가 보이지 않았으며, 추출된 화소들이 가까운 거리에 군집해 있어 비용효과측면에서 보다 유리함을 확인하였다.
국립수의과학검역원은 30일 식육가공품(식육추출가공품)에 대한 HACCP평가기준과 HACCP적용 작업장의 지정변경사항 중 소재지변경을 추가하는 축산물위해요소중점관리기준(검역원고시 제2008-28호)을 개정했다고 밝혔다. 식육추출가공품 HACCP 평가기준은 2008년 3월부터 학계, 협회, 업계, 공무원 등 전문가를 중심으로 T/F팀을 구성하여 현장실태조사, 실무 및 전문가 협의회 등을 통해 개발됐으며 HACCP적용 작업장 지정 변경사항의 경우에도 현행 중요관리점 회사명 대표자 변경 등에 한하여 변경지정이 허용되고 있었으나, 이번 개정고시에서는 불가피하게 HACCP적용 작업장이 소재지를 이전하는 경우에도 HACCP관리의 지속성을 감안하여 지정변경이 가능하도록 반영했다. 소재지 변경의 경우 무분별한 소재지변경에 따른 HACCP 수준저하문제가 발생하지 않도록 하기 위하여 작업장의 현장실사를 실시하고 소재지 변경이 완료되기 전까지는 HACCP 로고를 사용하지 못하도록 하는 조치도 함께 마련됐다. 검역원은 이번 식육추출가공품 HACCP 평가기준 개발과 HACCP 적용 작업장의 소재지 지정변경 인정으로 축산물 가공품 안전성 확보와 HACCP 제도가 더욱 활성화 되어 국민보건 향상에 기여할 것이 기대된다고 밝혔다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.151-156
/
1999
텍스트로부터 명사를 추출하기 위해서 다양한 기법이 이용될 수 있는데, 본 논문에서는 학습 데이터를 이용하여 생성한 규칙과 사전을 이용하는 단순한 모델을 통해 명사를 효과적으로 추출할 수 있는 기법에 대하여 기술한다. 사용한 모델은 기본적으로 명사, 어미, 술어 사전을 사용하고 있으며 명사 추정은 학습 데이터를 통해 생성한 규칙을 통해 이루어진다. 제안한 방법은 복잡한 언어학적 분석 없이 명사 추정이 가능하며, 복합명사 사전을 이용하지 않고 복합 명사를 추정할 수 있는 장점을 지니고 있다. 또한, 명사추정의 주 요소인 규칙이나 사전 등록어의 추가, 갱신 등이 용이하며, 필요한 경우에는 특정 분야의 텍스트 분석을 위한 새로운 사전의 추가가 가능하다. 제안한 방법을 이용해 "제1회 형태소 분석기 및 품사 태거 평가대회(MATEC '99')"의 명사 추출기 분야에 참가하였으며, 본 논문에서는 성능평가 결과를 제시하고 평가결과에 대한 분석을 기술하고 있다. 또한, 현재의 평가기준 중에서 적합하지 않은 부분을 규정하고 이를 기준으로 삼아 자체적으로 재평가한 평가결과를 제시하였다.
Proceedings of the Korean Society for Information Management Conference
/
2000.08a
/
pp.139-142
/
2000
본 연구의 의의는 최종이용자(end-user)를 대상으로, 이미 기존에 설정된 평가기준의 적용성을 검증해 보게 하는데 있다. 이용하는 목적과 분야에 따라 평가기준 및 확신도 (confidence)가 어떻게 달라지는지 살펴보고, 높은 비율의 확신도를 갖는 순위별로 리스트를 추출해 본다. 이용분야는 크게 인문사회주제와 자연과학주제로 나뉘며, 평가기준을 제시하기 전과 후의 차이는 어떻게 다른지 알아본다.
고해상 입체 위성영상 엄밀 모델링(Rigorous Modeling)을 구현하고, 이를 기반으로 각 입체시 영상을 제작하여 3차원 정확도 평가를 수행하였다. 본 연구 지역으로 진주지역의 SPOTS 입체영상을 이용하였으며, 각 영상별 기준점 자료는 1/5000 수치지도를 이용하여 입체영상의 중복영역 내에 균등하게 지상기준점 40점을 추출하였다. 추출된 점을 각각 기준점과 검사점으로 구분하여 엄밀 모델링의 정확도를 분석하였다. 또한, 입체시 제작시에 기준점으로 사용된 지상좌표와 이에 대응하는 영상점을 이용하여 입체시 영상을 제작하였다. 제작된 입체시 영상에서 동일점을 획득하기 위해 영상 매칭 및 수치해석도화기(Helava System)를 이용하여 정확한 영상점을 획득하여 3차원 좌표를 계산하여 정확도 평가를 수행하였다.
Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
Journal of Intelligence and Information Systems
/
v.26
no.1
/
pp.97-117
/
2020
Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.107-112
/
2012
본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.581-584
/
2000
웹사이트의 사용성에 영향을 미치는 요소들은 매우 많으며 또한 각각이 갖는 비중 또한 다르다. 이러한 점들을 고려한 웹사이트의 사용성을 예측할 수 있는 평가방법의 개발은 웹사이트 개발자 뿐 만 아니라 사용자들에게도 중요한 문제이다. 이러한 다중기준 평가에서는 대상 시스템의 전체적인 사용성을 효과적으로 정의할 수 있는 단일기준을 추출할 수 없기 때문에 다중기준을 고려하였고 그에 따라 가중치를 설정하기 위해 AHP 모형을 적용하였다. 본 연구의 목적은 웹사이트의 설계, 개발 단계에서 사용성을 평가, 개선할 수 있는 효율적인 사용성 평가방법을 제시하는 것이며 이를 위해 웹사이트의 사용성 평가항목 정의, 각 사용성 평가항목에 대한 세부평가기준 정의, 각 평가기준에 대한 쌍대비교, 가중치 산출, 가중치 종합에 의한 사용성 평가값 산출의 단계를 거쳐 연구가 수행된다.
본 연구는 고객 지향적 통시서비스 품질기준 정립을 위한 기초연구 과제로서 크게 통신 고객의 감 성파악 및 감성실험 부분으로 이루어졌다. 우선, 전형적 감성공학적 접근법에 의해 화상회의 시스템 을 사용할 때 느낄 수 있는 206개의 감성어휘가 추출되었으며 이를 어의적 기준과 상대적인 중요도를 기준으로 하여 10개의 주요 감성으로 정리하였다. 사용자의 불만사항 등으로부터 감성실험을 위한 설계변수를 추출하였으며 실험환경 구축을 위한 simulator가 구성되었다. 실험은 음성지연, 음성에코, 화면의 초당 프레임수 그리고 통화주제를 인자로 하는 2$^{4}$요인배치법에 의해 실시되었으며 16명의 피실험자와 Magnitude Estimation방법을 이용하여 파악된 각 감성이 주관적으로 평가되었다. 분산분석 결과, 음성지연은 모든 주요 감성들에 유의한 영향을 미쳤으며, 화상프레임 수는 거리감과 안정성을 제외한 모든 사용자 감성에 주인자로 작용하였다. 또한 요인분석을 실시한 결과 동적인 요인과 정적인 요인으로 전체 감성을 구분지을 수 있었으며 속도감과 깨끗함이 각각을 대표하는 감성으로 나타났다. 주관적이고 복합적인 통신 사용자의 여러 감성을 단일 품질 평가지수로 나타내어 통신소비자의 시스템 선호도 평가에 사용할 수 있는 방법이 제안되었다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.4
/
pp.413-420
/
2011
This study is to extract landmark buildings for pedestrian navigation from the existing spatial data sets automatically. At first, we defined candidates for landmark based on sight of pedestrian, then extracted final landmark by evaluating attributes of each candidate. The attribute is evaluated with relative or absolute criteria depending on the nature of each attribute. Landmarks extracted through the proposed method are compared to existing landmarks for vehicle and assessment of the validity and the applicability is performed. As a result, extracted Landmarks are expected to help guiding pedestrian effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.