• Title/Summary/Keyword: 편향 오차

Search Result 92, Processing Time 0.024 seconds

A GPU-based Terrain Rendering using Multi-resolution Bias Map (다해상도 편향맵을 이용한 GPU기반의 지형 렌더링)

  • Lee, Eun-Seok;Kim, Tae-Gwon;Lee, Jin-Hee;Shin, Byeong-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.314-316
    • /
    • 2012
  • 대용량 지형 데이터를 실시간에 렌더링 하기 위해 여러 가지 연속상세단계 기법들이 연구되었다. 하지만 이러한 방법을 적용해도 지형 데이터가 하드웨어에서 처리할 수 있는 크기보다 클 경우 과도한 간략화로 인한 기하오차가 발생하거나 프레임률이 저하된다. 또한 기존 연속상세단계 기법을 수행하기 위해 만들어진 자료구조들 또한 지형 데이터의 크기에 비례하여 커지므로 메모리와 전처리 시간이 많이 소요된다. 본 논문에서는 적은 개수의 정점으로 효과적인 지형 렌더링이 가능한 편향맵을 다해상도로 확장하여 별도의 자료구조가 따로 필요 없는 간단한 연속상세단계 기법을 제안한다. 이 방법은 적은 메모리 용량으로 높은 정확도의 지형을 실시간에 렌더링 할 수 있다. 연속상세단계 선택은 보다 빠른 처리를 위해 GPU에서 패치 단위의 테셀레이션을 통해서 단일 패스로 수행된다. 상세단계가 선택으로 세분화 된 지형의 각 정점들은 화면 공간상의 오차를 참조하여 각각의 상세단계를 선택한 후 해당되는 편향맵에 저장된 이동벡터만큼 이동하여 최종 지형 메쉬를 생성한다. 제안한 방법은 전처리 단계를 포함한 모든 처리가 GPU에서 수행되므로 속도가 빠르고 적은 정점으로 보다 정확한 지형을 렌더링 할 수 있다.

An Analysis of the Attitude Estimation Errors Caused by the Deflection of Vertical in the Initial Alignment (초기정렬에서 수직편향으로 인한 자세 추정 오차 분석)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.235-243
    • /
    • 2022
  • In this paper, in the case of an inertial navigation system, the posture estimation error in the initial alignment due to vertical deflection is analyzed. Posture estimation error due to DOV was theoretically analyzed based on the speed and posture error of INS. Simulations were performed to verify the theoretical grinding, and the results were in good agreement. For example, in the case of η=20", an alignment error of ϕN=0.00287°, ϕU=0.00196° occurred, and in the case of 𝜉=20", an error of ϕE= -0.00286° occurred. Through this, it was confirmed that the vertical posture error caused by the DOV occurred as a coupling characteristic of the INS posture error. It has been shown that an additional posture error may occur due to the DOV, which was not considered in the existing INS alignment, which means that correction for the DOV must be considered when applying high-precision INS.

다중 추출틀 조사기법을 적용한 인터넷 조사와 전화조사의 사례연구

  • 김영권;이계오;김주성;박무익
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2000.11a
    • /
    • pp.141-155
    • /
    • 2000
  • 현재 국내의 여론조사에서는 전화조사가 주로 이용되고 있으며, 최근 들어 인터넷조사를 활용하는 방법들이 연구되고 있다. 그러나 인테넷조사의 경우 모집단 구조가 편향된 특성을 가지고 있으므로 이에 대한 보완 수정없이 결과의 직접적인 이용은 많은 비표본오차를 발생시킬 수 있다. 그러므로 본 연구에서는 사회여론조사를 수행함에 있어서 편향모집단에서의 인터넷조사로부터의 추정값과 전화조사를 통한 추정값의 적절한 결합추정방법을 제안하고, 지난 4.13 총선의 조사자료를 이용하여 이들 결합추정의 효율성을 검토하였다.

  • PDF

A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot (이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

Prediction Value Estimation in Transformed GARCH Models (변환된 GARCH모형에서의 예측값 추정)

  • Park, Ju-Yeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.971-979
    • /
    • 2009
  • In this paper, we introduce the method that reduces the bias when the transformation and back-transformation approach is applied in GARCH models. A parametric bootstrap is employed to compute the conditional expectation which is the prediction value to minimize mean square errors in the original scale. Through the analyese of returns of KOSPI and KOSDAQ, we verified that the proposed method provides a bias-reduced estimation for the prediction value.

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil (쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정)

  • Bong, Tae-Ho;Kim, Byoung-Il;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.17-26
    • /
    • 2019
  • In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.

Bias-corrected imputation method for non-ignorable nonresponse with heteroscedasticity in super-population model (초모집단 모형의 오차가 이분산일 때 무시할 수 없는 무응답에서 편향수정 무응답 대체)

  • Yujin Lee;Key-Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.283-295
    • /
    • 2024
  • Many studies have been conducted to properly handle nonresponse. Recently, many nonresponse imputation methods have been developed and practically used. Most imputation methods assume MCAR (missing completely at random) or MAR (missing at random). On the contrary, there are relatively few studies on imputation under the assumption of MNAR (missing not at random) or NN (nonignorable nonresponse) that are affected by the study variable. The MNAR causes Bias and reduces the accuracy of imputation whenever response probability is not properly estimated. Lee and Shin (2022) proposed a nonresponse imputation method that can be applied to nonignorable nonresponse assuming homoscedasticity in super-population model. In this paper we propose an generalized version of the imputation method proposed by Lee and Shin (2022) to improve the accuracy of estimation by removing the Bias caused by MNAR under heteroscedasticity. In addition, the superiority of the proposed method is confirmed through simulation studies.

A calibration algorism for the bias of sensor axis in pedestrian dead reckoning system (보행자 관성 항법시스템에서의 센서 축 편향 보정 알고리즘)

  • Kim, Yun-Su;Park, Gun-Gu;Jo, Chan-Woong;Kim, Han-Bin;Lee, Chae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.493-495
    • /
    • 2015
  • PDR은 일반적으로 IMU센서로 부터의 가속도와 각속도를 측정하여 보행자의 위치를 추적하는 시스템이다. IMU센서로부터 측정된 가속도와 각속도 값은 센서를 기준으로 하기 때문에 보행자가 인지하는 고정 좌표계와는 차이가 있다. 이를 해결하기 위해 회전행렬을 사용하며 이후 계속해서 측정되는 각속도를 통해 회전행렬을 업데이트 한다. 업데이트된 회전행렬을 통해 좌표계를 환산하고 환산된 좌표계의 가속도 값으로부터 보행자는 고정좌표계 기준으로 위치 추적이 가능하다. 하지만 회전행렬을 업데이트 하는 과정에서 센서의 세 축이 이상적으로 수직이 아니라면 업데이트 과정에서 각속도의 오차가 누적되고 이는 좌표계를 환산에 영향을 끼쳐 위치 및 속도 추적 정확성을 낮춘다. 물리적인 Bias가 PDR 시스템에 누적오차를 발생시킨다. 이에 제안하는 센서 축 편향 보정 알고리즘은 IMU 센서의 물리적 축 오차를 보정해주어 더 정확한 위치 추적을 가능하게 한다. 또한 Matlab을 통해 데이터를 분석하고 알고리즘의 필요성을 보인다.

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

An Overview of Exit Polls for the 2006 Local Elections (2006년 지방선거 출구조사 현황 및 예측오차)

  • Kim, Ji-Hyeon;Kim, Young-Won
    • Survey Research
    • /
    • v.8 no.1
    • /
    • pp.55-79
    • /
    • 2007
  • This article attempts to provide an overview of the exit polls for the 2006 local elections in Korea. The sampling method, sampling error, non-response rate, and prediction error of the exit polls are reviewed. Also, we explore the fact that the propensity to vote varies according to age and gender of voters. In terms of age and gender, the representativeness of the sample is investigated by comparing to the data released by the National Election Commission. Through this empirical research, we show that the exit poll samples are unbalanced in terms of age and this unbalance may be one of the causes of bias occurred in the prediction of the 2006 local election results. The design effects of the sample design implemented for the exit polls are also examined.

  • PDF