• Title/Summary/Keyword: 편심밸브

Search Result 26, Processing Time 0.023 seconds

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Study on Flow Characteristics for Eccentric Shaft in the Butterfly Valve System (축편심 버터플라이 밸브의 유동특성에 관한 연구)

  • Park, S.M.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.587-591
    • /
    • 2011
  • To improve the performance of the control butterfly valve seals are used to eccentric shaft. In this case, vertical opening gas of the butterfly valve is non-symmetrical, which will change the flow pattern around the valve. In this study, the eccentric drive shaft of the butterfly valve to change flow characteristics are performed numerically. Flow pattern and pressure drop are investigated as the valve opening angle increases for a given mass flow rate. The valve flow coefficient is compared to the without eccentric shaft.

  • PDF

A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

An Experimental Study on the Characteristics of the In-cylinder Eccentricity Swirl Flow with Intake Port Shapes in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 형상에 따른 실린더 내 편심 선회유동 특성에 관한 실험적 연구)

  • 이지근;김덕진;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-72
    • /
    • 1998
  • This experimental study was carried out to investigate the characteristics of the in-cylinder eccentricity swirl flow generated by a 4 valve cylinder head with a tangential and a helical intake port. the measurements of the in-cylinder velocity field have been made by a two-channel LDA system. The mean flow coefficient(Cf(meam)), swirl ratio(Rs) and mass flowrate with valve eccentricity ratios and an intake port partition between the two intake ports were measured in the steady flow test fig using the ISM(impulse swirl meter). The experimental results indicated that the mass flowrate through the tangential intake port was 19% and 7.7% more than that of the helical intake port in case of with and without intake port partition respectively. There was a tendency to be a single rotation flow in swirl flow fields formed by a 4 valve cylinder head because of the interaction between the two intake ports. As the intake port partition was not set between flow coefficient(Cf(mean)) was 7.35%.

A Study on the Flow Analysis of Triple Eccentric Butterfly Valve with Two-way Pressure (양방향 압력에 작동 가능한 3중 편심 버터플라이 밸브의 유동해석에 관한 연구)

  • RYU, M.R.;PARK, H.J.;KIM, J.H.;LEE, D.H.;LEE, S.B.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • The triple eccentric butterfly valve has metal sheet and this study about butterfly valve ceiling is an innovative approach. But it is affected by the static pressure as well as cross-current. The damage at the valve on the pipe resulted from the reflux is due to valve leakage. This study is investigated on the triple eccentric disk and it is applied with angle and the static pressure in all cases to develop cross-current triple eccentric butterfly valves. The disc with the diameter of 300A is valve against flow velocity. The entrance pressure by flow characteristics is performed with numerical analysis. As the result, valve torque production is reduced more than the conventional triple eccentric valve and entrance pressure is decreased on the increase of valve open angle. And flow coefficient can be known to be increased.

Development of Bi-directional Triple-eccentric Type Butterfly Valve (양방향 삼중편심 버터플라이 밸브 개발)

  • Kim, Soo-Young;Lee, Dong-Myung;Bae, Jung-Hoon;Shin, Sung-Chul;Sul, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.545-551
    • /
    • 2009
  • In naval architecture and offshore engineering, the development and a broad use has been achieved in the field of flow control valves for pipe system. Butterfly valves are also widely used for flow control, but there are not many studies for triple-eccentric butterfly valves. Moreover, if the fluid of pipeline flows in the bi-direction then it makes more complicate to adapt triple-eccentric butterfly valves to flow control. In this study, we are trying to develop a bi-directional triple-eccentric butterfly valve through sealing mechanism and stem design study. Digital mockup using 3D CAD was constructed for shape interference check and structural analysis was conducted for structural safety. Also we performed leakage test to check out the durability of the bi-directional pressure for the developed valve.

SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE (위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계)

  • Yang, S.M.;Baek, S.H.;Kang, S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

Determination of Eccentric Axis for Pump Control Valve Using the Characteristic Function (특성함수를 이용한 펌프 제어 밸브의 편심축 결정)

  • Shin, Myung-Seob;Yi, Sang-Il;Park, Gyung-Jin;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The pump control valve is a butterfly valve that has an eccentric rotating axis. It is not only used as a butterfly valve to control the flow rate or pressure, but also as a check valve to prevent backward flow. A new design method of eccentric rotating axis is proposed to design the valve. The height of the rotating axis is determined through flow field analysis. A general purpose of computational fluid dynamics software system, Fluent is used to simulate the fluid flow. Flow field analysis is performed for various heights of the rotating axis and different opening angles of the valve. A characteristic function is defined for estimating the flow characteristics based on the results of flow field analysis. The characteristic function is defined in order to determine the height of the rotating axis. An optimization problem with a characteristic function is formulated to determine the amount of eccentricity. The height of the Totaling axis of the valve is determined through solving the optimization problem.

A study on the effects of intake port eccentricity and a partition between the two intake ports on the in-cylinder swirl characteristics in a valve diesel engine (4밸브 디젤기관의 흡기포트 편심과 두 흡기포트 사이의 격막이 실린더 내 선회 특성에 미치는 영향에 관한 연구)

  • Lee, Ji-Geun;Gang, Sin-Jae;No, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.948-961
    • /
    • 1997
  • The effects of intake port eccentricity and a partition between the two intake ports on the incylinder swirl characteristics in a 4 valve diesel engine having the two intake ports, one is a helical intake port and the other is a tangential intake port, were investigated by using the impulse swirl meter(ISM) in a steady flow test rig. Mean flow coefficient ( $C_{f(mean)}$, swirl ratio ( $R_{s}$) and the mass flowrate through the two intake ports with and without intake port partition were measured. The results showed that the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by valve eccentricity ratio ( $N_{y}$) and the existence of an intake port partition between the two intake ports. Mean flow coefficient ( $C_{f(mean)}$) increases and swirl ratio ( $R_{s}$) decreases in case of being the partition between the two intake ports. And also the mass flowrate through the tangential intake port is 19.0% and 7.7% more than that of the helical intake port in case of the two intake ports with and without partition respectively.ively.