• Title/Summary/Keyword: 펠티어효과

Search Result 26, Processing Time 0.029 seconds

Temperature Control of Aluminum Plate by PWM Current Control of Peltier Module (펠티어 소자의 PWM 전류제어를 이용한 알루미늄 판의 온도제어)

  • Pang, Du-Yeol;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the temperature control in aluminum plate with Peltier module. From the experimental work, Peltier module is used to control the temperature of small aluminum plate for both heating and cooling with the control of current and fan ON/OFF. And current control of Peltier module was accomplished by PWM method. As a result of experiments, it is proper that operate cooling fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 125sec to control temperature of aluminium plate between $30^{\circ}C$ and $70^{\circ}C$ and about 70sec between $40^{\circ}C$ and $60^{\circ}C$, in ambient temperature $28^{\circ}C{\sim}29^{\circ}C$ while cooling fan is operated only cooling duration. With the cooling current, temperature control of aluminum plate was accomplished more rapidly in comparison without cooling current. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control (PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • Pang Du-Yeol;Kwon Tae-Kyu;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF

Characteristics of electric power for thermoelectric cooling & generating module (열전냉각소자와 열전발전소자의 발전특성)

  • 우병철;이희웅;이동윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.448-451
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was 0.15-0.4$\Omega$ Developed thermoelectric modules can be expected th have better properties than thermoelectric cooling modules above $70^{\circ}C$ in temperature difference between hot and cold ends.

  • PDF

열전식 열펌프의 원리와 응용

  • 주해호
    • Journal of the KSME
    • /
    • v.25 no.5
    • /
    • pp.400-405
    • /
    • 1985
  • 펠티어효과가 10여년 전에 발견되었으나 이것을 공학분야에 응용되기 시작한 것은 반도체 재료가 개발되기 시작한 1950년경부터 실용화되기 시작하였다. 이러한 열전식 열펌프를 이용하여 냉 각시스템을 만들 경우 재래식인 기계식 냉동시스템과 비교해 볼 때 여러 가지 장점이 있다. 열전식 냉동방법은 전자가 한 반도체에서 다른 반도체로 이동하면서 그 주위의 열과 함께 이동 하는 원리를 이용한 것이기 때문에 기계식 냉동시스템의 중요한 구성품인 압축기, 증발기, 응 축기, 용매제와 같은 부품이 전혀 필요가 없다. 움직이는 부품이 없기 때문에 소음이 없고 신 뢰성이 높다. 100W 보다 적은 열출력에 대해서는 무게가 적고 부피가 적은 장점이 있다. 또한 습도 제어가 정확하고 전류의 방향만 바꾸워 주면 쉽게 냉동에서 가열로 전환이 된다. 작동습 도범위는 제품에 따라 다르지만 대개 +100.deg.C~ -125.deg. C까지 가능하다. 이러한 장점 때 문에 가장 많이 응용되고 있는 분야는 군사무기인 관성항법유도무기의 전자부품실을 냉각시켜 주는 데 사용되고 그 외에 용도는 다양하다. 본 고에서는 열전식 열펌프의 원리와 그 응용에 대해서 가능한 상세히 설명하여 앞으로 이 분야에 대한 연구에 보템이 되고저 한다.

  • PDF

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

Temperature Control of the Aluminum Plate using Peltier Element (펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • 전원석;방두열;최광훈;권대규;김남균;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.764-767
    • /
    • 2004
  • This paper present the temperature control of aluminum plate using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is asserted to Peltier element, it absorbs heat from low temperature side and emits to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with ON/OFF control scheme and fan ON/OFF. As the result of experiments, it is proper to act fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 100sec to increase to 7$0^{\circ}C$ and drop to 35$^{\circ}C$ of aluminium plate temperature and about 90sec to increase to 7$0^{\circ}C$ and drop to 4$0^{\circ}C$ in ambient temperature 3$0^{\circ}C$ while fan is on only in cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier element to heating and cooling.

  • PDF

Optimization of Conduction-cooled Pottier Current Leads (전도냉각형 펠티어 전류도입선의 최적화)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.764-771
    • /
    • 2005
  • A theoretical investigation for optimization of conduction-cooled Peltier current leads is undertaken. A Pottier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high Tc superconductor (HTS) lead in the order of decreasing thermoelectric tempera ture. Mathematical expression for the minimum heat flow per unit current crossing the TE metal interface and that flowing from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE-metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the 73 and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

A study on an experimental basis a special character of insulating oil the use of a transformers (변압기용 절연유의 특성에 관한 실험적 연구)

  • Kim, Sung-Dae;Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5188-5193
    • /
    • 2011
  • This research is for temperature control of insulating oil inside the transformer. After I designed and manufactured various systems using Peltier element, which was thermal element, and Heat pipe, which was a cooling system, without electric power. The optimum system could be made by applying them to the temperature control for the insulating oil. I could verify that the combination type of Heat pipe 100 W+ Peltier 100W has a more outstanding capacity than pure Heat pipe 300 W within 60 degrees Celsius through experiments. Through this, I verify that the method of a proper design is prominent, and make an attempt at contribution to power saving effect and more effective control of Distributing board by using this combination type.

A study of thermoelectric Heat Pump device (열전소자를 이용한 히트펌푸에 관한 연구)

  • 박창엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.1
    • /
    • pp.6-12
    • /
    • 1968
  • Experiments have been made on alloys to determine the practicability of using the Peltier effect in a thermoelectric devices. The cooling and heating results of thermoelectrie material coposed of n and p type BiTe are used, whose properties are; , , , , and K: thermal conductivity. The temperature of the cold part has been measured in veccum with respect to the temperature of the hot part. The experiment result agreed fairly with expectation such as was 42 degree C.

  • PDF

A Study on the Performance of Home Clothes Dryer using Thermoelectric Module (열전소자를 이용한 가정용 의류 건조기의 성능에 관한 실험적 연구)

  • Lee, Min-Jae;Gong, Sang-Un;Kim, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2073-2078
    • /
    • 2007
  • This study was performed to develop a dryer for home clothes using thermoelectric module. The thermoelectric module was used as a heat source and a dehumidification device because it has heating part and cooling part at once. To design for maximizing the energy efficiency and the rate of dehumidification, the parameters of the dryer using thermoelectric module are heat capacity and air flow rate. This study showed that the thermoelectric module can be used in the clothes dryer and energy efficiency of clothes dryer be better than that of electric heating dryer.

  • PDF