• Title/Summary/Keyword: 페이지 교체 알고리즘

Search Result 22, Processing Time 0.026 seconds

Implementation and Performance Analysis of Virtual Memory Page Replacement Algorithms Based on Demand Paging (요구 페이징 기반 가상메모리 페이지 교체 알고리즘의 구현 및 성능 분석)

  • Park, Kyeong-Mo;Yoon, Yeo-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1757-1760
    • /
    • 2005
  • 요구 페이징 방식의 가상메모리 시스템에서 페이지 참조 스트링에 따른 페이지 교체 알고리즘의 성능평가를 위한 시뮬레이션을 개발한다. 참조 집약성을 기반으로 워킹세트(working set) 모델을 수정한 MWS 교체 알고리즘을 제안하였고 다양한 교체 알고리즘(FIFO, SC, LFU, LRU, Rand)들과 비교 실험한 결과 MWS는 발생 페이지 부재 수 측면에서 다른 교체 정책 보다 성능이 우수하였다.

  • PDF

A novel page replacement policy associated with ACT-R inspired by human memory retrieval process (인간 기억 인출 과정을 응용하여 설계된 ACT-R 기반 페이지 교체 정책)

  • Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The cache structure, which is designed for assuring fast accesses to frequently accessed data, resides on the various levels of computer system hierarchies. Many studies on this cache structure have been conducted and thus many page-replacement algorithms have been proposed. Most of page-replacement algorithms are designed on the basis of heuristic methods by using their own criteria such as how recently pages are accessed and how often they are accessed. This data-retrieval process in computer systems is analogous to human memory retrieval process since the retrieval process of human memory depends on frequency and recency of the retrieval events as well. A recent study regarding human memory cognition revealed that the possibility of the retrieval success and the retrieval latency have a strong correlation with the frequency and recency of the previous retrieval events. In this paper, we propose a novel page-replacement algorithm by utilizing the knowledge from the recent research regarding human memory cognition. Through a set of experiments, we demonstrated that our new method presents better hit-ratio than the LRFU algorithm which has been known as the best performing page-replacement algorithm for DBMS caches.

Expected-Cost-based Cache Replacement Algorithm (기대비용기반 캐쉬교체 알고리즘)

  • 이정준;황규영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.240-242
    • /
    • 1999
  • 웹 데이터는 기존의 페이지를 기반으로 한 교체 알고리즘이 고려하지 않은 다양한 데이터 아이템의 크기, 네트워크 밴드위쓰 등으로 인한 다양한 참조 비용과 데이터의 만기시간(expiration time)을 갖는다. 그러나, 기존의 연구에서는 만기시간이 미치는 영향에 대한 연구가 초보적인 수준이다. 본 논문에서는 만기시간이 참조비용에 미치는 영향을 반영한 기대비용기반 캐쉬교체 알고리즘을 제안한다. 제안한 알고리즘은 만기시간내에 참조되어 캐쉬효과를 얻을 확률을 이용하여 참조비용의 기대값을 구하고, 이 값을 비교하여 교체대상을 선정한다. 제안한 알고리즘은 데이터의 크기, 참조비용 뿐만 아니라 만기시간의 영향을 확률적으로 정확히 반영하므로, 기존의 교체 알고리즘보다 우수한 성능을 보인다.

  • PDF

Design and Implementation of a Web-based Simulator for Educating Page Replacement Algorithms (페이지 교체 알고리즘 교육을 위한 웹 기반 시뮬레이터의 설계 및 구현)

  • Koh, Jeong-Gook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.552-559
    • /
    • 2012
  • Operating Systems is a discipline which handles complex and concepts related to its components and how an operating system works. However, most of the OS courses have been textbook-oriented theoretical classes. Therefore, many instructors have tried to make use of educational tools to help students understand a lecture and arouse their interests consistently. This paper describes the design and implementation of a web-based page replacement simulator which shows the process of page replacement algorithms visually. The academic achievement evaluation and t-test results for 2010's students and 2011's show that the differences of the correct answer ratios for the exam about page replacement algorithms and the scores between two groups are meaningful. And the results of survey show that a page replacement simulator is useful as an educational tool which causes the interests about operating systems and enhances the understanding of a lecture.

Analyzing Virtual Memory Write Characteristics and Designing Page Replacement Algorithms for NAND Flash Memory (NAND 플래시메모리를 위한 가상메모리의 쓰기 참조 분석 및 페이지 교체 알고리즘 설계)

  • Lee, Hye-Jeong;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.543-556
    • /
    • 2009
  • Recently, NAND flash memory is being used as the swap device of virtual memory as well as the file storage of mobile systems. Since temporal locality is dominant in page references of virtual memory, LRU and its approximated CLOCK algorithms are widely used. However, cost of a write operation in flash memory is much larger than that of a read operation, and thus a page replacement algorithm should consider this factor. This paper analyzes virtual memory read/write reference patterns individually, and observes the ranking inversion problem of temporal locality in write references which is not observed in read references. With this observation, we present a new page replacement algorithm considering write frequency as well as temporal locality in estimating write reference behaviors. This new algorithm dynamically allocates memory space to read/write operations based on their reference patterns and I/O costs. Though the algorithm has no external parameter to tune, it supports optimized implementations for virtual memory systems, and also performs 20-66% better than CLOCK, CAR, and CFLRU algorithms.

A Cost-Based Buffer Replacement Algorithm in Object-Oriented Database Systems (객체지향 데이타베이스에서의 비용기반 버퍼 교체 알고리즘)

  • Park, Chong-Mok;Han, Wook-Shin;Whang, Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Many object oriented database systems manage object buffers to provide fast access to objects. Traditional buffer replacement algorithms based on fixed length pages simply assume that the cost incurred by operating a buffer is propertional to the number of buffer faults. However, this assumption no longer holds in an objects buffer where objects are of variable length and the cost of replacing an object varies for each object. In this paper, we propose a cost based replacement algorithm for object buffers. The proposed algorithm replaces the have minimum costs per unit time and unit space. The cost model extends the previous page based one to include the replacement costs and the sizes of objects. The performance tests show that proposed algorithm is almost always superior to the LRU-2 algorithm and in some cases is more than twice as fast. The idea of cost based replacement can be applied to any buffer management architectures that adopt earlier algorithms. It is especially useful in object oriented database systems where there is significant variation in replacement costs.

  • PDF

An Efficient Buffer Replacement Policy based on CLOCK Algorithm for NAND Flash Memory (낸드 플래시 메모리를 위한 CLOCK 알고리즘 기반의 효율적인 버퍼 교체 전략)

  • Kim, Jong-Sun;Son, Jin-Hyun;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.825-834
    • /
    • 2009
  • 최근에 낸드 플래시 메모리는 빠른 접근속도, 저 전력 소모, 높은 내구성 등의 특성으로 인하여 차세대 대용량 저장 매체로 각광 받고 있다. 그러나 디스크 기반의 저장 장치와는 달리 비대칭적인 읽기, 쓰기, 소거 연산의 처리 속도를 가지고 있고 제자리 갱신이 불가능한 특성을 가지고 있다. 따라서 디스크 기반 시스템의 버퍼 교체 정책은 플래시 메모리 기반의 시스템에서 좋은 성능을 보이지 않을 수 있다. 이러한 문제를 해결하기 위해 플래시 메모리의 특성을 고려한 새로운 플래시 메모리 기반의 버퍼 교체 정책이 제안되어 왔다. 본 논문에서는 디스크 기반의 저장 장치에서 우수한 성능을 보인 CLOCK-Pro를 낸드 플래시 메모리의 특성을 고려하여 개선한 CLOCK-NAND를 제안한다. CLOCK-NAND는 CLOCK-Pro의 알고리즘에 기반하며, 추가적으로 페이지 접근 정보를 효율적으로 활용하기 위한 새로운 핫 페이지 변경을 한다. 또한, 더티인 핫 페이지에 대해 콜드 변경 지연 정책을 사용하여 쓰기 연산을 지연하며, 이러한 새로운 정책들로 인하여 낸드 플래시 메모리에서 쓰기 연산 횟수를 효율적으로 줄이는 우수한 성능을 보인다.

The Least-Dirty-First CLOCK Replacement Policy for Phase-Change Memory based Swap Devices (PCM 기반 스왑 장치를 위한 클럭 기반 최소 쓰기 우선 교체 정책)

  • Yoo, Seunghoon;Lee, Eunji;Bahn, Hyokyung
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1071-1077
    • /
    • 2015
  • In this paper, we adopt PCM (phase-change memory) as a virtual memory swap device and present a new page replacement policy that considers the characteristics of PCM. Specifically, we aim to reduce the write traffic to PCM by considering the dirtiness of pages when making a replacement decision. The proposed policy tracks the dirtiness of a page at the granularity of a sub-page and replaces the least dirty page among the pages not recently used. Experimental results show that the proposed policy reduces the amount of data written to PCM by 22.9% on average and up to 73.7% compared to CLOCK. It also extends the lifespan of PCM by 49.0% and reduces the energy consumption of PCM by 3.0% on average.

A Study on Flash Memory Management Techniques (플래시메모리의 관리 기법 연구)

  • Kim, Jeong-Joon;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.143-148
    • /
    • 2017
  • Flash Memory which is light and strong external shock as storage of small electronics like smartphone, digital camera, car black box has been widely used. Since the operation speed of the read operation and the write operation are different from each other, and the flash memory has the feature that it is not possible to overwrite, the delete operation is added to solve these problems. Wear-leveling must also be considered, since the number of erase times of the flash memory is limited. Many studies have been conducted on the substitutional algorithms of flash memory based on these characteristics of recent flash memories. So, to solve the problem that has existing buffer replacement algorithm this thesis divide page into 6 groups and when proposed algorithm select victim page, it consider reference page frequency and page recency.

WWCLOCK: Page Replacement Algorithm Considering Asymmetric I/O Cost of Flash Memory (WWCLOCK: 플래시 메모리의 비대칭적 입출력 비용을 고려한 페이지 교체 알고리즘)

  • Park, Jun-Seok;Lee, Eun-Ji;Seo, Hyun-Min;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.913-917
    • /
    • 2009
  • Flash memories have asymmetric I/O costs for read and write in terms of latency and energy consumption. However, the ratio of these costs is dependent on the type of storage. Moreover, it is becoming more common to use two flash memories on a system as an internal memory and an external memory card. For this reason, buffer cache replacement algorithms should consider I/O costs of device as well as possibility of reference. This paper presents WWCLOCK(Write-Weighted CLOCK) algorithm which directly uses I/O costs of devices along with recency and frequency of cache blocks to selecting a victim to evict from the buffer cache. WWCLOCK can be used for wide range of storage devices with different I/O cost and for systems that are using two or more memory devices at the same time. In addition to this, it has low time and space complexity comparable to CLOCK algorithm. Trace-driven simulations show that the proposed algorithm reduces the total I/O time compared with LRU by 36.2% on average.