• Title/Summary/Keyword: 페라이트

Search Result 901, Processing Time 0.031 seconds

Performance Analysis of the Powerline Communication for Condition Monitoring System of an MW Class Offshore Wind Turbine's Nacelle (MW급 해상풍력발전기 나셀의 상태 감시를 위한 전력선 통신 성능 분석)

  • Sohn, Kyung-Rak;Kim, Kyoung-Hwa;Jeong, Seong-Uk;Nam, Seung-Yun;Kim, Hyun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.3
    • /
    • pp.159-164
    • /
    • 2016
  • The goal of this study is to implement a communication system that can monitor the status of the nacelle using the power cable itself, without the dedicated communication lines such as an UTP cable and optical fiber for the offshore wind turbine. An inductive coupling powerline communication system for a MW class offshore wind turbine was proposed and its communication performance was demonstrated. The inductive couplers was designed for operation at up to 500 A using a ferrite composite materials. Field test was carried out on the wind farms of Jeju island. Using the iperf communication test program, we have obtained more than 15 Mbps data transmission rate through the 100 m power cable that was installed between the nacelle and the bottom of the power converter. In the data transmission stability test for a week, there was no failure ever. The minimum transmission rate was 15 Mbps and the average data rate was about 20 Mbps. Next, we have installed an infrared camera inside the nacelle in order to measure the temperature distribution and variation of the nacelle. The real-time thermal image taken by the camera was successfully sent to the monitoring system without error.

Metallic Mineralogical Characteristics of Forged Iron Axe from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘 출토 단조 철부의 금속광물학적 특성)

  • Kim, Jeong-Hun;Yi, Ki-Wook;Lee, Chan-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-245
    • /
    • 2007
  • The forged iron axe of the middle 3rd Century found in the No. 2 wood-framed tomb from the Hwangseongdong site, Gyeongju is rectangular on the plane level. The iron axe shines in met-allic luster, which is light grey with pale creamy tint. The result of X-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and texture of the original ore has been kept intact. There are fine-grained quartz, calcite, mica, magnetite, amphibole, unknown tungsten minerals, pyroxene and olivine inside the axe. Those must be the impurities that they failed to remove in the thermal treatment process. Generally, the iron axe consists mainly of pearlite texture coexisting ferrite and cementite, and show high carbon contents with homogeneous distribution. It can be interpreted the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. Crude ores of the iron axe are possible utilized by magnetite from the Ulsan mine on the basis of the occurrences and inclusions. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

CO2 decomposition characteristics of Ni-ferrite powder (Ni-페라이트 분말을 이용한 CO2 분해 특성)

  • Nam, Sung-Chan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5376-5383
    • /
    • 2011
  • The objective of this study is the development of carbon-recycle technology, that converts carbon dioxide captured from flue gas to carbon monoxide or carbon for reuse in industrial fields. It is difficult to decompose $CO_2$ because $CO_2$ is very stable molecule. And then metal oxide was used as an activation agent or catalyst for the decomposition of $CO_2$ at low temperature. Metal oxides, which converts $CO_2$ to CO or C, were prepared using Ni-ferrite by solid state method and hydrothermal synthesis in this study. TPR/TPO and TGA were used as an analysis method to analyze the decomposition characteristics of $CO_2$. As the results, the reduction area of $H_2$ was high value at 15 wt% of NiO and the decomposition area of $CO_2$ was superior capacity at 5 wt% of NiO. However, TGA data showed contrary results that reduction area of $H_2$ was 28.47wt% and oxidation area by $CO_2$ was 26.95wt% at 2.5 wt% of NiO, one of the Ni-ferrite powders synthesized using solid state method. $CO_2$ decomposition efficiency was 94.66% and it is excellent results in comparison with previous studies.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels (페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가)

  • Lee, Jin-Beom;Kim, Dong-Cheol;Nam, Dae-Geun;Kang, Nam Hyun;Kim, Soon-Kook;Yu, Ji-Hun;Rhym, YoungMok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.

Manufacturing Technique and Conservation of Bigyeokjincheolloe Bomb Shells Excavated from the Ancient Local Government Office and Fortress of Mujang-hyeon, Gochang (고창 무장현 관아와 읍성 출토 비격진천뢰의 제작기법과 보존처리)

  • Kim, Haesol;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.17-36
    • /
    • 2020
  • This paper describes the consevation treatment of eleven bigyeokjincheolloe bomb shells that were excavated from the Joseon-period local government office and fortress of Mujang-hyeon (present-day Mujang-myeon) in Gochang in 2018. It also provides information on the production method of the shells revealed through CT scanning, gamma-ray transmission imaging, and metallographic analysis. In preparation for the special exhibition "Bigyeokjincheolloe" at the Jinju National Museum in 2019 (July 16 to August 25), contaminants were removed from the shells and their surface was reinforced during the first phase of conservation treatment. Furthermore, the closures for the shells were identified for the first time. Regarding the production of the shells, the CT scanning and gamma-ray transmission imaging identified many blowholes in the interior of the body and the use of a chaplet on the side of one shell. The side of the body proved to be relatively thinner than the top and bottom. The traces of a hole for pouring molten metal into the center of the bottom indicates that molten metal was indeed emptied into the inverted body. In the metallographic analysis of two of the bodies and one lid, cementite and pearlite structures were identified on the body, indicating that it was made by casting. The presence of the ferrite structure with a partial distribution of the pearlite along with non-metallic inclusion in the lid suggested that the lid was made by forging.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

The Effect of Phases of Starting Materials on the Grain Size at High Pressure: the Comparison of Grain Size in the Samples Using Glass and Nano Powder as Starting Materials (고압환경에서의 결정 크기에 원시료의 상이 미치는 영향: 비정질 시료와 나노파우더를 이용한 시료의 결정 크기 비교)

  • Eun Jeong Kim;Alessio Zandona;Takehiko Hiraga;Sanae Koizumi;Nobuyoshi Miyajima;Tomoo Katsura;Byung-Dal So
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • In this study, we report the effect of starting materials on the grain size in a multi-component system at high pressure experiments. We used two different starting materials, glass and nano powders, to synthesize bridgmanite in the reduced conditions in the presence of calcium-ferrite-phase MgAl2O4 to compared the grain size of synthesized samples. After synthesizing the sample at 40 GPa, 2000 K for 20 hrs, the sample from glass showed the grain size of 50-200 nm whereas the one from nano powders has ~500 nm of grains. This difference may come from 1) the temperature of 2000 K which is low enough for glass starting materials to make more crystal nucleis than to grow crystal size or 2) the possible difference in the redox state of starting materials. It is suggested that the using of nano powders is better to synthesize bigger grains in high pressure experiments with multi-component systems rather than using glass starting materials.

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

A Study of Iron Pot Casting and Bellows Technology (토제 거푸집 무쇠솥 주조와 불미기술 연구)

  • Yun, Yonghyun;Doh, Jungmann;Jeong, Yeongsang
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.4-23
    • /
    • 2020
  • The purpose of this study was to explore the diversity of Korea's iron casting technology and to examine various casting methods. The study involved a literature review, analysis of artifacts, local investigation of production tools and technology, and scientific analysis of casting and cast materials. Bellows technology, or Bulmi technology, is a form of iron casting technology that uses bellows to melt cast iron before the molten iron is poured into a clay cast. This technology, handed down only in Jeju Island, relies on use of a clay cast instead of the sand cast that is more common in mainland Korea. Casting methods for cast iron pots can be broadly divided into two: sand mold casting and porcelain casting. The former uses a sand cast made from mixing seokbire (clay mixed with soft stones), sand and clay, while the latter uses a clay cast, formed by mixing clay with rice straw and reed. The five steps in the sand mold casting method for iron pot are cast making, filling, melting iron into molten iron, pouring the molten iron into the cast mold, and refining the final product. The six steps in the porcelain clay casting method are cast making, cast firing, spreading jilmeok, melting iron into molten iron, pouring the molten iron, and refining the final product. The two casting methods differ in terms of materials, cast firing, and spreading of jilmeok. This study provided insight into Korea's unique iron casting technology by examining the scientific principles behind the materials and tools used in each stage of iron pot casting: collecting and kneading mud, producing a cast, biscuit firing, hwajeokmosal (building sand on the heated cast) and spreading jilmeok, drying and biyaljil (spreading jilmeok evenly on the cast), hapjang (combining two half-sized casts to make one complete cast), producing a smelting furnace, roasting twice, smelting, pouring molten iron into a cast, and refining the final product. Scientific analysis of the final product and materials involved in porcelain clay casting showed that the main components were mud and sand (SiO2, Al2O3, and Fe2O3). The release agent was found to be graphite, containing SiO2, Al2O3, Fe2O3, and K2O. The completed cast iron pot had the structure of white cast iron, comprised of cementite (Fe3C) and pearlite (a layered structure of ferrite and cementite).