• Title/Summary/Keyword: 페놀릭 산

Search Result 3, Processing Time 0.021 seconds

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Manufacturing of the Enhances Antioxidative Wine Using a Ripe Daebong Persimmon (Dispyros kaki L) (대봉감 연시를 이용한 항산화 활성이 강화된 와인 제조)

  • Joo, Ok-Soo;Kang, Su-Tae;Jeong, Chang-Ho;Lim, Jong-Woo;Park, Yeong-Gyu;Cho, Kye-Man
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.126-134
    • /
    • 2011
  • In this study, the characteristics of alcohol fermentation using ripe Daebong persimmon juice were studied in static fermentation condition by Saccharomycess cerevisiae CS02 in an effort to develop new types of functional wine. Attempts were made to modify the ripe Daebong persimmon juice in order to find suitable conditions for alcohol fermentation. The modified ripe Daebong persimmon juice that was most suitable for alcohol fermentation contained $24^{\circ}brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 9 days of fermentation at $25^{\circ}C$, $12.2{\pm}0.02%$ of alcohol was produced from the modified juice and its pH markedly decreased to $3.97{\pm}0.02$. The wine contained free sugar such as fructose ($0.12{\pm}0.02$ g/L), some organic acids such as malic acid ($35.92{\pm}0.24$ g/L), succinic acid ($8.12{\pm}0.03$ g/L), oxalic acid ($22.14{\pm}0.11$ g/L), and citric acid ($13.63{\pm}0.08$ g/L), as well as some flavanols and phenolic acids such as catechin gallate ($38.99{\pm}0.32$ mg/L), epicatechin gallate ($110.21{\pm}0.16$ mg/L), gallic acid ($163.88{\pm}1.11$ mg/L), epigallocatechin ($15.97{\pm}0.18$ mg/L), and tannic acid ($13.36{\pm}0.02$ mg/L). In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (84.25%) and $ABTS^{\cdot+}$ radical (99.65%) scavenging activities were increased significantly with a corresponding increased in the organic acid and phenolic acid contents, but decreased in the flavonoids.