• 제목/요약/키워드: 펌프제어 유압 시스템

검색결과 47건 처리시간 0.025초

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • 제4권4호
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF

Load compensation and Speed Controller for Hydraulic Inverter-fed Elevator (유압 인버터 엘리베이터를 위한 부하 보상 및 속도 제어기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제51권2호
    • /
    • pp.163-167
    • /
    • 2014
  • To prove the vibration and speed error problems caused by the nonlinear friction characteristics and load variation of the hydraulic system, a PID speed controller and a load compensation controller for the hydraulic inverter-fed elevator are proposed. The load compensation controller is composed by the PI controller and the speed controller is composed by the PID controller. The P,I and D gains of the control parameters are obtained by the frequency response of system transfer function. The Effectiveness of the proposed controller are shown by experimental results, which the proposed controller yields robustness with load variations and stable and good speed and acceleration responses with less oscillations.

Implementation of a Hybrid Controller for Hydraulic Inverter Controller (유압식 인버터 제어기를 위한 하이브리드 제어기 구현)

  • 한권상;최병욱
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.55-64
    • /
    • 2002
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the system actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. In this paper, the friction characteristics of a cylinder is examined, which may cause the abrupt increase of the acceleration in the zero-crossing speed region. To overcome the drawbacks of a PID controlled hydraulic system, a zooming fuzzy logic controller is designed and finally an improved hybrid controller is Proposed. The proposed controller is composed of the PID controller and the zooming fuzzy controller. The effectiveness of the proposed control scheme is shown by simulation and experimental results, In which the proposed hybrid control method yields good control performance not only in the zero-crossing speed region but also In the overall control region including steady-state region.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제43권11호
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권11호
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

Design of High Performance Hybrid Fuzzy Controller for the zero-crossing speed control of a Hydraulic System (유압시스템의 극저속 속도제어를 위한 하이브리드 퍼지 제어기의 설계)

  • Han, Sang-Soo;Kim, Chan-Seob;Son, Seong-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제11권12호
    • /
    • pp.2352-2360
    • /
    • 2007
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the elevator actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. In this paper, the friction characteristics of a cylinder is examined, which may cause the abrupt increase of the acceleration in the zero-costing speed region. To overcome the drawbacks of a PID controlled hydraulic elevator system, a zooming fuzzy logic controller is designed and finally an improved hybrid fuzzy controller is proposed. The effectiveness of the proposed control scheme are shown by simulation and experimental results, which the proposed fuzzy hybrid control method yields good control performance not only in the zero-crossing speed region but also in the overall control region including steady-state region.

A study on the development of the engine/hydraulic pump control system of excavator (굴삭기의 엔진 및 유압펌프 제어시스템의 개발에 관한 연구)

  • 하석홍;윤영환;이일영;조겸래;이진걸;황봉동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.675-680
    • /
    • 1990
  • According to the recent increase of demands for multi-function and economics on hydraulic excavator, it is required that excavator should have simple operation, higher and operational efficiency. However, it is difficulty for current hydraulic system to satisfy demands fully. This study shows that new control system improves power transmission efficiency, work capability of engine and hydraulic system of current excavator.

  • PDF

The Design of the Fuzzy Logic Controller for Controlling the Speed in the Zero-Crossing Speed Region of a Hydraulic System (유압시스템의 극저속 속도제어를 위한 퍼지논리 제어기의 설계)

  • Son, Woong-Tae;Hwang, Seuk-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제19권3호
    • /
    • pp.85-92
    • /
    • 2005
  • Due to the friction characteristic of pump, cylinder, and between passenger car and the rail, there exist dead zone in the hydraulic system actuated with inverter, which can not be controlled by a PID controller. In this paper, the friction characteristic of a cylinder is considered first, which may cause the uncontrolled speed in the zero-crossing speed region. And then, the zooming fuzzy logic controller is designed to overcome the drawback by the existing PID speed controller. Finally, The proposed hybrid fuzzy controller is applied to the PID controller in the normal speed region and to the fuzzy controller in the zero-crossing speed region. The reason is that the problem of the uncontrolled speed in the zero-crossing speed region caused by the friction characteristic of the cylinder in hydraulic elevator can be solved, and the effectiveness of the controlling system not only in the zero-crossing speed region but also the overall controlling region including steady-state can be simulated and performed.

The Development of Small Sluice gate systems without Upper Concrete structure (상부 콘크리트 구조물이 없는 소형 수문 시스템 개발)

  • Kook, Jeong-Han;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제12권11호
    • /
    • pp.4738-4744
    • /
    • 2011
  • This study proposes the system of new small sluice gate operated without the upper concrete structure. The new mechanism is composed of hydraulic system, driving mechanism to feed the floodgate up and down, hydrological locking device, safety device and etc. The hydraulic pumps and control systems away from the location of the sluice gate systems are installed and controled in place. The feed device with the hydraulic rack, pinion and hydraulic actuator is installed on the side of the sluice gate. The following results take the advantages of cost reduction, operation safety and compact product.

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제20권9호
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.