• Title/Summary/Keyword: 펄스 해상도

Search Result 74, Processing Time 0.025 seconds

Development of Digital Chirp Pulse Generator for Fine Resolution Image Radar (고해상도 레이더용 광대역 디지털 첩 펄스 발생기 실험모델 개발)

  • 강경인;임종태;신희섭;전재한
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.104-108
    • /
    • 2006
  • There are range and azimuth direction resolution of synthetic aperture radar on the aircraft or satellite. Wide bandwidth chirp pulse generation technology is prerequisite for SAR image with fine resolution. There are two kinds of digital chirp pulse generation technology as arbitrary waveform generator(AWG) and direct digital synthesizer(DDS). In this paper, we design and implement a digital chirp pulse generator to generate 300MHz wide bandwidth linear FM chirp pulse for the fine resolution image with direct digital synthesizer. Implemented chirp pulse generator can be useful for the SAR sensors to make 50cm range resolution image.

Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part- (초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분-)

  • 권성재;박종철
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1986
  • A prototype ultrasound sector B-scanner has been developed where the front-end hardware refers to all the necessary circuits for transmitting the ultrasound pulses into the human body and receiving the reflected echo signals from it. The front-end hardware can generally be divided into three parts, i.e., a pulse generator for insonification, a receiver which is responsible for processing of low-level analog signals, and a steering controller for driving the mechanical sector probe whose functions and design concepts are described in this paper. The front-end hardware is implemented which incorporates the following features: improvement of the axial resolution using a circuit which reduces the ring-down time, flexibility of generating time-gain compensation curve, and adoption of a one-chip microcomputer for generating the rate pulses based on the sensor output waveforms.

  • PDF

A New Driving Method for High Resolution AC PDP (고해상도 AC PDP를 위한 새로운 구동방식)

  • Cho, Young-Wan;Kwon, Oh-Kyong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.45-53
    • /
    • 2001
  • We have proposed a new driving method of AC PDP for both high resolution over HDTV and high luminance. The new driving method can reduce data and scan pulse width to 0.85${\mu}s$ by utilizing both rising and falling edges of sustain pulse and can provide high resolution AC PDP with high luminance by increasing the number of addressing discharge using sustain pulses with phase shifts. As a result, the proposed driving scheme makes it possible to drive 2080 horizontal resolution panel with high luminance. The experimental results using 4-inch color AC PDP with $30{\times}58$ pixels indicate that the luminance can achieved up to 850 $cd/m^2$ without image noise when we employ the four phase shifted sustain pulses with the amplitude of 140V and the frequency of 125KHz.

  • PDF

이중 경사 자장 에코와 일반 경사 자장 에코 펄스열로부터의 $\Delta{R}_1$$\Delta{R}_2$에 대한 컴퓨터 가상 실험

  • 김대홍;김은주;서진석
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.102-102
    • /
    • 2002
  • 목적:$\Delta{R}_1$$\Delta{R}_2\;^{*}$$T_1$, $T_2\;^{*}$로부터 직접 구해야 하지만, 시간 해상도 때문에 각각 $T_1$, $T_2\;^{*}$ 강조영상으로부터 구하는 것이 일반적이다. $T_1$, $T_2\;^{*}$ 강조영상으로부터 얻은 $\Delta{R}_1$$\Delta{R}_2\;^{*}$ 과 이중 경사 자장에코 펄스열로부터 얻은 $\Delta{R}_1$$\Delta{R}_2\;^{*}$ 를 컴퓨터 가상 실험을 통해서 비교한다. 강조 영상의 신호 세기만으로는 정확한 관류 정보를 얻을 수 없음을 보이고자 한다. 대상 및 방법: 알려진 $\Delta{R}_1$$\Delta{R}_2\;^{*}$ 값을 이용하여 강조영상으로부터 구할 수 있는 $\DeltaR_1$$\Delta{R}_2\;^{*}$ 을 농도에 따라서 가상실험으로 구하고, 이 값과 이중 경사 자장 에코 펄스열로부터 구할 수 있는 $\Delta{R}_1$$\Delta{R}_2\;^{*}$를 가상실험으로 구해서 비교한다.

  • PDF

Imaging with terahertz electromagnetic pulses (테라헤르츠 전자기파 펄스의 변조를 이용한 이미징의 해상도 연구)

  • Oh, Seung-Jae;Kang, Chul;Son, Ju-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Images were acquired by the modulation of terahertz electromagnetic signals and compared by modulation frequencies. For the real-time acquisition of images a fast scanning method has been adopted utilizing a galvanometer. The acquired time domain waveforms were transformed into frequency domain data by fast Fourier transformations (FFT). We chose some frequency components to compare the resolution of images. The beam profiles at the focal position were measured by a knife-edge technique. Beam diameter was shown to decrease as the frequency increased. By scanning one- and two-dimensional samples a significant image enhancement was observed with the frequency increment. A nondesouctive imaging system using ㎔ electromagnetic pulses was also demonstrated.

Pulse Position Determination using Adaptive Threshold Detector (Adaptive Threshold Detector를 이용한 펄스 위치 계산)

  • Chagn, Jae-won;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • MLAT which is an independent cooperative surveillance system is applied to increase the positon resoultin of secondary survelliance radar. MLAT uses the hyperboic or hyperboloid position mesurement algorithm. Central processing unit of MLAT calculates target position using time difference of arrival (TDOA) which can be solved from time of arrival (TOA) information of each receivers (at least 4 receivers). To increase position resolution of MLAT which use TDOA, TOA which is transfer time from tranmitter to receiver shold be calculated with precision time resolution in receiver. This paper explained the MLAT system briefly and explained ATD which is one of means of calcuating pulse position. ATD is applied to solve the deviation of pulse position due to different amplitude of signals in mulitiple receivers. In this paper, to analysis the performance of ATD, the simulation result of LAS and CDS was compared with the simulation result of basic threshold method.

Pulse Integration Technique for VTS Application (VTS 적용을 위한 펄스 적분 기법)

  • Park, Dong-Hwa;Jeong, Se-Young;Choi, Kwan-Beum;Kim, Byung-Doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.521-527
    • /
    • 2014
  • Most of Sea Surveillance Radar(SSR)s which are used in Vessel Traffic Service are Magnetron-based Non-Coherent Method and use the pulse integration technique having a signal to noise ratio enhancement function to satisfy a surveillance performance about target. Especially, Pulse Integration technique has an effect on target serveillance performance through signal to noise ratio, in addition, has an effect to improve a signal interference and noise spike. In this paper, we have a simulation experiment by using MATLAB simulation tool for appling a pulse integration technique in VTS system using a Non-Coherent radar, and verify an optimum pulse integration technique through out performance analysis between frequently use pulse integration techniques.

Coherent Pulse Train Based Velocity Estimation and Compensation for High Resolution Range Profile of Moving Target in Stepped Frequency Radar (계단 주파수 레이더에서 이동표적의 고해상도 거리 추정을 위한 코히어런트 펄스열 기반의 속도 추정 및 보상)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.309-315
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method of achieving high range resolution by gradually increasing the frequency of a transmitted pulse to create a wide synthetic bandwidth. However, in the case of moving target, accurate range estimation can not be performed due to the range-Doppler coupling phenomenon, so it is necessary to compensate through accurate velocity estimation. In this paper, we propose a stepped frequency radar waveform with a Coherent Pulse Train(CPT), velocity estimation results according to parameters using this method and VMD(Velocity Measurement Data) were compared and analyzed by numerical simulations.

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;이광식;이동인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.84-89
    • /
    • 2001
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), composite discharge(corona + surlace discharge). Multiresolution analysis was used for performing discrete wavelet transform PD signals was decomposed into "approximation" and "detail" cOmpJnents until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. 1be results show that in corona discharge the segment 7, 8, 9, 10, 1] values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric chscharge pattern because coupled both corona and dielectric oounded discharges. We can confimJly discriminate the type of PD source.

  • PDF

High Resolution Forward-Looking Collision Avoidance Automotive Radar Using Stepped-Frequency Pulsed-Doppler(SFPD) Technique (계단 주파수 변조된 펄스 도플러 기법을 이용한 고해상도 전방 충돌 회피용 차량 레이다 성능 분석)

  • Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.784-790
    • /
    • 2009
  • A forward-looking automotive radar typically utilizes the frequency modulated continuous wave(FMCW) or pulsed-Doppler waveform for the Information acquisition of the target range and velocity. In order to obtain the high resolution target information, however, a narrow pulse width and wide bandwidth are inherently required, thus resulting in high peak power and high speed digital converter processing. In this paper, a stepped-frequency pulsed-Doppler(SFPD) waveform algorithm is proposed for high resolution forward looking automotive radar application. The performance of the proposed SFPD waveform technique is analyzed and compared with the conventional FMCW and PD method. Since this technique can be used for the high resolution target imaging with arbitrary range and Doppler resolution, it is expected to be useful In automotive radar target classification for the precision collision avoidance applications in the future.