• 제목/요약/키워드: 펄스제트

검색결과 25건 처리시간 0.027초

펄스 플라즈마 제트내에 있는 구리원자의 발광 스펙트럼 정밀 보정 (Precise correction of the copper emission spectra from the pulsed plasma jet)

  • 김종욱;고동섭;오승묵
    • 한국광학회지
    • /
    • 제12권2호
    • /
    • pp.115-120
    • /
    • 2001
  • 본 연구는 고온 고압의 전열(electrothermal)플라즈마내에 존재하는 구리원자의 발광 스펙트럼을 정량적으로 분석하는 방법에 대해 논하였다. 플라즈마는 플라즈마 발생장치내에 설치되어 있는 모세관 양단의 두 개의 전극이 방전함으로써 발생하며 고속으로 대기를 향해 전파해 나간다. 플라즈마의 특성을 분석하기 위해서는 플라즈마의 여기온도나 전자밀도와 같은 물리량의 측정이 필요하다. 그러나 여기온도나 전자밀동와 직접적으로 관련이 있는 발광 스펙트럼은 분광시스템의 파장에 따른 서로다른 응답 특성 때문에 왜곡되어질 수 있다 따라서 본 연구에서는 펄스 플라즈마 제트로부터 얻은 구리원자의 발광 스펙트럼을 정밀하게 보정하는 방법을 제시하였다.

  • PDF

축소/확대관 출구로부터 방출되는 펄스파에 관한 연구 (A Study on the Impulse Waves Discharged from the Exit of the Convergent/Divergent Pipes)

  • 이동훈;주경민;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.640-645
    • /
    • 2001
  • The present study is to investigate the characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing(TVD) scheme. For the computational work, some initial compression waves are assumed inside the pipe so that those are identical to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is believed that the convergent pipe can playa role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

  • PDF

충돌제트로 생성되는 분무의 특성에 관한 연구 (A Study on the Characteristics of the Spray Produced by Two Impinging Jets)

  • 강보선
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF

평판에 충돌하는 펄스파의 특성에 관한 연구 (A Study on the Characteristics of the Pulse Wave Impinging upon a Flat Plate)

  • 김희동;이동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.562-567
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was vaned in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

모세관 방전의 전기 및 유체역학적 특성 계산 (Calculation of Electrical and Hydrodynamic Properties of Capillary Discharge)

  • 김성호;김진성;이영현;양경승
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1548-1549
    • /
    • 2006
  • 모세관 방전은 내벽의 절연 물질이 용발되어 수만도 영역에서 고압의 플라즈마를 생성하는 장치로서 이로부터 분사된 플라즈마 제트는 추진제 점화나 신물질 제조 둥에 이용할 수 있다. 본 연구에서는 수십 $m{\Omega}$ 영역에서 수 ms에 걸쳐 수십 kA의 펄스 전류가 흐르는 모세관 방전에 대해 플라즈마의 온도 및 압력에 의해 결정되는 저항을 통하여 펄스 전원 회로를 해석하며, 이로부터 공급되는 오옴열에 의해 플라즈마의 온도, 압력 등이 결정되는 유체역학적 변화를 수치적으로 계산하였다. 이 결과는 용발에 의해 정상 상태에 도달하는 플라즈마의 특성을 잘 보여주고 있으며, 모세관 방전 실험의 전기적, 유체역학적 변수 예측에 유용하게 쓰일 수 있다.

  • PDF

집진기의 공기소모량과 백 필터내의 압력전파에 대한 실험적 연구 (Experimental Investigation on Air Consumption and Pressure Wave Propagation inside A Filter Bag of A Dust Collector)

  • 정원락;홍성철
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.886-891
    • /
    • 2008
  • 이 연구는 필터 백을 사용하는 집진기에서 펄스밸브에 부착된 솔레노이드 밸브의 통전 시간과 공기소모량 사이의 관계를 실험적으로 규명하였으며 이 때 필터 백에 작용하는 압력파의 전달과정을 고찰하였다. 펄스당 공기소 모량이 집진기 운전비용의 주요 요소이므로 펄스제트의 전파과정을 관찰하고 압력파형과 공기소모량을 측정하였다. 또 주어진 조건하에서 필터 백의 길이의 영향을 고찰하고 효율적인 탈진작용을 할 수 있는 통전시간과 충격량 사이의 관계를 규명하였다 주어진 실험조건 범위에서는 통전시간이 짧을수록 더 큰 충격량을 얻을 수 있으며 동일한 통전 시간에 대하여는 여러 번의 짧은 펄스를 발생시키는 것이 더 효율적인 것으로 나타났다.

섬광 X선과 잔류관통깊이 분석을 통한 성형작약탄 제트에 대한 펄스전류 효과 (The Effect of High Current Pulse against Shaped Charge Jet by Flash X-Ray and Residual Penetration Depth)

  • 주재현;최준홍;김동규;김시우;김정태
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.574-581
    • /
    • 2015
  • In this paper, the effect of high voltage current pulse against shaped charge jet was analyzed through the visualization of jet behavior using flash X-ray and comparison of depth of penetration(DOP) into RHA(Rolled Homogeneous Armor) witness plates. The behavior of jet particles has been acquired using a flash X-ray equipment when current pulse was applied into the metal jet of a shaped charge(SC) warhead. Typical results such as jet breakup and radial jet dispersion, which are due to electromagnetic pressure by current pulse, have been obtained. Dozens of penetration experiments using a shaped charge with 55 mm diameter were performed according to various combinations of major parametric variables such as electrode spacing, standoff distance from SC warhead to electrode, and charge voltage. Subsequently, interrelations between major parametric variables and DOPs into RHA were analyzed.

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

엔진 배기 소음기내를 전파하는 약한 충격파에 관한 연구 (Study of the Weak Shock Wave Propagating inside an Engine Exhaust Muffler)

  • 이동훈;권용훈;김희동
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.510-519
    • /
    • 2002
  • The present study addresses a computational work of the weak shock wave propagating inside an automobile exhaust muffler. Several different types of the silencer systems are employed to investigate the magnitude of the shock wave during propagating through them. The Initial shock wave Mach number $M_s$ is varied between 1.01 and 1.30, and a normal shock wave is given at the inlet of the silencer systems. The second order total variation diminishing scheme Is employed to solve the two dimensional, compressible, unsteady Euler equations. The present computational results are compared with the previous experimental ones available. The present computations predict the experimental results with a quite good accuracy. Of the four silencer systems applied. the most desirable silencer system to reduce the peak pressure at the exalt of the exhaust pipe is discussed from the Point of view of the engineering design of the silencer systems.

축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구 (A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes)

  • 이동훈;이명호;권용훈;김희동;박종호
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.