• Title/Summary/Keyword: 펄스시험

Search Result 297, Processing Time 0.027 seconds

A Study on the Improvement of Direction Error for Electronic Warfare System (전자전장비의 방향탐지 오차 개선에 관한 연구)

  • Choi, Jae-In;Kim, Seung-Woo;Chin, Hui-Cheol;Choi, Woo-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.567-575
    • /
    • 2017
  • The direction finder is an important device for an electronic support(ES) system because it is responsible for finding the direction of an emitter. The higher the accuracy of the direction finding, the higher the vitality of the weapon system with the ES system. Recently, the direction error occurred in the operating shipboard ES system when direction finding was performed for the signal with a pulse width of 200 ns. Therefore, this paper proposes, an improved method to reduce the direction error for shipboard ES systems. The proposed method was applied to the operating shipboard ES system and a field test was performed. The results of the field test showed that the direction error was reduced significantly for the signal with a pulse width of 200 ns.

Development of the Automated Ultrasonic Flaw Detection System for HWR Nuclear Fuel Cladding Tubes (중수로형 핵연료 피복관의 자동초음파탐상장치 개발)

  • Choi, M.S.;Yang, M.S.;Suh, K.S.
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.170-178
    • /
    • 1988
  • An automated ultrasonic flaw detection system was developed for thin-walled and short tubes such as Zircaloy-4 tubes used for cladding heavy-water reactor fuel. The system was based on the two channels immersion pulse-echo technique using 14 MHz shear wave and the specially developed helical scanning technique, in which the tube to be tested is only rotated and the small water tank with spherical focus ultrasonic transducers is translated along the tube length. The optimum angle of incidence of ultrasonic beam was 26 degrees, at which the inside and outside surface defects with the same size and direction could be detected with the same sensitivity. The maximum permissible defects in the Zircaloy-4 tubes, i.e., the longitudinal and circumferential v notches with the length of 0.76mm and 0.38mm, respectively and the depth of 0.04 mm on the inside and outside surface, could be easily detected by the system with the inspection speed of about 1 m/min and the very excellent reproducibility. The ratio of signal to noise was greater than 20 dB for the longitudinal defects and 12 dB for the circumferential defects.

  • PDF

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

Analysis of LDC Message Reception Performance of Korean eLoran Pilot Service according to Modulation Methods (첨단 지상파항법시스템(eLoran) 시범서비스의 LDC 메시지 변조기법에 따른 수신성능 분석)

  • Pyo-Woong, Son;Sak, Lee;Tae Hyun, Fang;Kiyeol, Seo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.525-529
    • /
    • 2022
  • In the eLoran system, the Loran Data Channel (LDC) is used to provide precise timing and positioning. The LDC message can be modulated with the Eurofix method, which modulates the transmission time of the 3rd-8th pulse not used for navigation, and the 9th pulse method, which modulates data using the 9th additional pulse after the existing 8 Loran pulses. In this paper, we analyzed the reception performance of the LDC message transmitted from the eLoran transmitter according to the modulation method. The eLoran testbed transmitter in Incheon was set to transmit LDC messages simultaneously with the 9th pulse modulation method and the Eurofix modulation method. Then, the LDC messages stored in the databases of the eLoran differential stations in Incheon and Pyeongtaek were analyzed in terms of the message reception rate according to the modulation method. Using the navigation aid management ship Inseong No. 1, the range of LDC message reception of actual sea users near Incheon Port was also analyzed. The results of this study are expected to be utilized in the full operational capability service after the eLoran pilot service.

Study on Flowmeter Proving Errors of a Small Volume Prover (소형 푸루버의 유량계 검증 오차 연구)

  • 백종승;임기원;최용문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.259-266
    • /
    • 1990
  • Leaks at the piston seal and the by-pass port of a small volume prover have relatively large influence on the proving accuracy in comparison with a conventional ball prover. The pulse interpolator, which is to increase the discrimination, is affected by the characteristic of the flowmeter signal. In this study, a small volume prover of the double cylinder type was designed in order to study the pulse interpolation error as well as the leak error. The basic volume of the prover determined by a water draw method was about 9.68L. Experimental results revealed that interpolation data attained by the repeated piston pass for turbine meters at a fixed flowrate may be treated effectively by applying a statistical method. It was possible to limit the pulse interpolation error less than .+-. 0.02% at the 95% confidence level. However, in the case of the bulk meter, if failed to achieve the required repeatability level because of the pulse characteristics. The basic volume change appeared to be independent of the piston velocity within the .+-. 0.05% of tolerance.

Design of 4-Way Wilkinson Divider with Waveguide to Stripline Transition Used in The Monopulse Radar Front-end (도파관 천이 구조를 갖는 모노펄스 레이더용 4-Way 윌킨슨 분배기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.69-76
    • /
    • 2010
  • From the present paper we researched about the design of 4-Way Wilkinson divider with waveguide to stripline transition which used to split the LO signal with equi-amplitude and equi-phase in the X-Band Monopulse radar RF front-end. The monopulse radar front end operating in the X-Band is composed of 3 waveguide reception mixers which down convert sum, azimuth and elevation signal to IF and one SSB waveguide mixers which generate X-Band test signal. It is required the 4-way divider with low loss, equi amplitude and equiphase splitting the LO signal to provide the LO signal to each mixer consisting RF frontend. In this paper we designed and fabricated the 4-Way Wilkinson divider with waveguide transition to divide the LO signal into equi-amplitude and equi-phase. The fabricated Wilkinson divider have the insertion loss 6.8dB, VSWR 1.06~1.28, and phase balance maximum 4.5degree for each output ports.

Study of the Weld Defects Identification Method by Ultrasonic Pulse Echo Patterns (초음파 펄스 에코 패턴으로 용접 결함 식별 방법 연구)

  • Kim, Won-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6114-6118
    • /
    • 2013
  • This study examined the ultrasonic pulse reflection method(UPRM) for testing each ultrasonic pulse waveform model(UPWM) based on weld defects. The sharp crack of a clear signal was generated. The echo height of the defective probes changed according to the location. In a long crack in a circle around the defective probes, the Swivel scanning echo height when using the particle was reduced drastically. The peaks in the echo were thin because the needle was pointed. The porosity defects arising from a single echo was sharp and crisp, but a number of pores of the collective reflection overlapped and ajagged echo was observed. Slag, slag inclusions, cracks, and defects at the Swivel scan of each particle using the echo shape showed difference in the degree. Cracks were revealed as sudden changes in the echo height of the slag inclusions: increase ${\rightarrow}$ decrease ${\rightarrow}$ increase ${\rightarrow}$ decrease. In addition, the location of a number of defects in the dense pore geometry, such as a typical echo sundry, revealed the shape in the slag. Poor penetration of the defect echo, revealed the cracks to have a sharp-edged, crack-like shape with an echo.

Practical Method to Extract Azimuth Angle of Target for Air-Borne Antenna Hybrid Mono-Pulse Radar System (항공용 안테나 하이브리드 모노펄스 레이다 시스템의 실용적 표적 방위각 추정 방법)

  • Kim, Jin-Woo;Youn, Jae-Hyuk;Rho, Soo-Hyun;Lee, Jong-Eun;Jeon, Yeong-Beom;Ok, Jae-Woo;You, Eung-Noh;Yoon, Sang-Ho;Shin, Hyun-Ik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.735-738
    • /
    • 2018
  • The accuracy of extracting the azimuth angle of a target is significantly affected by the error in the mono-pulse ratio of the air-borne antenna hybrid mono-pulse Radar system. This error is strongly induced by the phase imbalance between the channels of the system. In this paper, a method is proposed for effectively calibrating the phase imbalance caused by physical differences between the RF channels from the antenna to the $180^{\circ}$ hybrid. Through a flight test, it was confirmed that the accuracy of the azimuth angle of the target is improved by using the proposed method.

Monopulse Secondary Surveillance Radar Antenna with Sum/Difference/SLS Channels (합/차/부엽 억제 채널을 갖는 모노펄스 보조 감시 레이더(용) 안테나)

  • Choi, Jong-Hwan;Chae, Hee-Duck;Park, Jong-Kuk;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.720-728
    • /
    • 2011
  • In this paper, development of the monopulse secondary surveillance radar antenna which can be used for IFF system is presented. This antenna that is passive linear array is comprised of the row-feeder and several array-elements. The row-feeder provides sum, different and SLS(Sidelobe Supression) channels which are optimized the distribution of the power and phase ratio. The azimuthe sidelobe level of the sum channel beam pattern is -20 dBc or less. The SLS channel covers the sidelobe of the sum-chanel in the whole azimuth angle range. And the difference channel is used to perform the mono-pulse function, improves the detection accuracy in the azimuth direction. Meanwhile, the arrayelement makes shaped beam in the elevation angle, in order to eliminate the clutter and multipath effects from the ground. Performance of the antenna developed is verified by the measurement of S-parameters and far-field beam pattern, and satisfies all of the development specifications well.

A compensation algorithm of cycle slip for synchronous stream cipher (동기식 스트림 암호 통신에 적합한 사이클 슬립 보상 알고리즘)

  • 윤장홍;강건우;황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1765-1773
    • /
    • 1997
  • The communication systems which include PLL may have cycle clip problem because of channel noise. The cycle slip problem occurs the synchronization loss of communication system and it may be fatal to the synchronous stream cipher system. While continuous resynchronization is used to lessen the risk of synchronization it has some problems. In this paper, we propose the method which solve the problems by using continuous resynchronization with the clock recovery technique. If the counted value of real clock pulse in reference duration is not same as that of normal state, we decide the cycle slip has occurred. The damaged clock by cycle slip is compensated by adding or subtracting the clock pulse according to the type of cycle slip. It reduced the time for resynchronization by twenty times. It means that 17.8% of data for transmit is compressed.

  • PDF