• Title/Summary/Keyword: 퍼지-유전자알고리즘

Search Result 207, Processing Time 0.024 seconds

Multi-Objective Fuzzy Optimization of Structures (구조물에 대한 다목적퍼지최적화)

  • Park, Choon-Wook;Pyeon, Hae-Wan;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.503-513
    • /
    • 2000
  • This study treats the criteria, considering the fuzziness occurred by optimization design. And we applied two weighting methods to show the relative importance of criteria. This study develops multi-objective optimization programs implementing plain stress analysis by FEM and discrete optimization design uniformaly. The developed program performs a sample design of 10-member steel truss. This study can carry over the multi-objective optimization based on total system fuzzy-genetic algorithms while performing the stress analysis and optimization design. Especially, when general optimization with unreliable constraints is cannot be solve this study can make optimization design closed to realistic with fuzzy theory.

  • PDF

An Automatic Design for Fuzzy Controllers Using Genetic Algorithms (유전자 알고리즘을 이용한 퍼지 제어기의 자동 설계)

  • 박세환;김영일;김종규;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.306-309
    • /
    • 1996
  • 본 논문에서는 유전자 알고리즘을 이용하여 퍼지 제어기를 위한 최적 소속함수와 제어 규칙들을 자동으로 생성하는 방법을 제안한다. 제안한 방법은 효과적인 염색체 암호화 방법을 이용하여 소속함수의 표현 해상도가 증가하여도 소속함수의 언어항의 개수를 일정하게 유지하여 제어 규칙을 표현하는 염색체의 길이가 크게 늘어나지 않도록 한다. 또, 소속함수의 언어항의 개수가 서로 다른 염색체에 대해서도 개선된 교배 및 돌연변이 연산자를 이용하여 효과적으로 유전자 연산을 적용할 수 있게 한다. 본 논문에서는 제안된 방법을 퍼지 제어기의 자동 생성 방법의 평가 문제로 널리 이용되는 트럭 후진 주차 문제에 적용하여 성능을 평가한다.

  • PDF

Unsupervised Feature Selection Method Using a Fuzzy-Genetic Algorithm (퍼지-유전자 알고리즘을 이용한 무감독 특징 선택 방법)

  • 이영제;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.199-202
    • /
    • 2000
  • 본 논문에서는 퍼지-유전자 접근방법을 이용한 무감독 특징 선택방법에 대하여 나타내었다. 이 방법은 각각의 특징들의 중요도에 따라 순서를 정하기 위해 사용되는 weighted distance 를 포함하는 특징 평가 지표 (feature evaluation index)를 최소화시키는데 있다. 또한 특징 평가 지표에서 사용되는 각 패턴들의 쌍에 대하여 근접함의 정도를 퍼지 멤버쉽 함수를 이용하여 결정하고 유전자 알고리즘은 평가 지표를 최소화시킴으로써 각 특징의 중요도를 나타내는 최적의 weighting 계수의 집합을 한기 위하여 적용하였다.

  • PDF

Fuzzy Rule Optimization Using a Multi-population Genetic Algorithm (다중 개체군 유전자 알고리즘을 이용한 퍼지 규칙 최적화)

  • Lou, See-Yul;Chang, Won-Bin;Kwon, Key-Ho
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.54-61
    • /
    • 1999
  • In this paper, we apply one of modified Genetic Algorithms, a Multi-population Genetic Algorithm(MGA) that improves the genetic diversity to determine the fuzzy rule base and the shape of membership functions. The generation of the fuzzy rule base for fuzzy control, generally, depends on expert's experience. We suggest a new evaluation function to optimize fuzzy rule base. Simulation shows that the proposed method has good result.

  • PDF

An Auto Fuzzy Rule-base Extraction Method using Genetic Algorithm (유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식)

  • 박진성;손동설;임중규;정경권;이현관
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.1003-1006
    • /
    • 2003
  • This paper proposed An auto fuzzy rule-base extraction method using genetic algorithm. The suggested method is an auto fuzzy rule-base extration method neither expert advise fuzzy rule-base nor trial and error fuzzy rule-base. In order to confirm the validity of proposed method, we have applicated dc motor control and confirmed effective.

  • PDF

Partially Evaluated Genetic Algorithm based on Fuzzy Clustering (퍼지 클러스터링 기반의 국소평가 유전자 알고리즘)

  • Yoo Si-Ho;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1246-1257
    • /
    • 2004
  • To find an optimal solution with genetic algorithm, it is desirable to maintain the population sire as large as possible. In some cases, however, the cost to evaluate each individual is relatively high and it is difficult to maintain large population. To solve this problem we propose a novel genetic algorithm based on fuzzy clustering, which considerably reduces evaluation number without any significant loss of its performance by evaluating only one representative for each cluster. The fitness values of other individuals are estimated from the representative fitness values indirectly. We have used fuzzy c-means algorithm and distributed the fitness using membership matrix, since it is hard to distribute precise fitness values by hard clustering method to individuals which belong to multiple groups. Nine benchmark functions have been investigated and the results are compared to six hard clustering algorithms with Euclidean distance and Pearson correlation coefficients as fitness distribution method.

Optimal Design of Fuzzy Set-based Fuzzy Neural Network with Multi-Output and Its application to Partial Discharge Pattern Recognition (다중 출력을 가진 퍼지 집합 기반 퍼지뉴럴네트워크 최적 설계 및 부분방전 패턴인식으로의 적용)

  • Park, Geon-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.411-414
    • /
    • 2008
  • 본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.

  • PDF

Design and Analysis of Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 Interval Type-2 TSK Fuzzy Logic System의 설계 및 해석)

  • Kim, Dae-Bok;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문에서는 Interval Type-2 TSK 퍼지 논리 시스템을 설계하고 기존의 Type-1 TSK 퍼지 논리 시스템과 비교 분석한다. Type-1 TSK 퍼지 논리 시스템과 Interval Type-2 TSK 퍼지 논리 시스템을 비교하기 위해 노이즈에 영향을 받은 목적 데이터를 사용한다. 유전자 알고리즘을 사용하여 전반부의 중심값의 학습률과 후반부 계수값의 학습률을 결정한다.

  • PDF

The Migration Scheme in the Multi-population Genetic Algorithms using Fuzzy Logic Controller (퍼지 논리 제어를 이용한 다 개체군 유전자 알고리즘의 이주 기법)

  • 전향신;권기호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.76-78
    • /
    • 2003
  • 다 개체군 유전자 알고리즘에서는 여러 개의 개체군을 사용하여 각 개체군을 독립적으로 진화를 시키는데, 이 논문에서는 퍼지 논리 제어를 이용하여 독립적으로 개체군을 진화시켜 집단으로 이주시키는 새로운 코딩방법을 제안한다. 이 퍼지 논리 제어는 최적화과정 동안 교배 비율과 돌연변이 비율을 적합하게 조절하여 수행하는 두 퍼지 논리 제어를 나타낸다. 제안하는 방식을 성능평가해서 기존의 방식과 비교해 보았다. 제안하는 방식이 수렴속도를 향상시킬 수 있다는 장점을 보여준다.

  • PDF

Fuzzy Modeling Using DNA-Coded Genetic Algorithm (DNA 코드 유전화 알고리즘을 이용한 퍼지 모델링)

  • Yu, Jin-Young;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2295-2297
    • /
    • 2003
  • 본 논문에서는 발생모델인 DNA 코딩 기법과 진화 모델인 유전자 알고리즘을 이용한 비선형 시스템의 퍼지 모델 링에 대한 새로운 방법을 제안한다. DNA 코딩 기법은 실제 생체 분자 (bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법으로, 진화 연산과 결합하여 인공지능의 새로운 분야로 부각되고 있다. 그러나, 실제 생체 분자를 계산의 도구로 사용하기 때문에 기존의 컴퓨터에 적용하기 어렵고, 단순히 합성과 분리라는 간단한 방법으로 해를 구하기 때문에 보다 효과적인 알고리즘을 개발하여야 할 필요성이 있다. 따라서 본 논문에서는 DNA 코드 유전자 알고리즘을 제안하며, 제안된 방법은 비선형 시스템의 퍼지 모델링에 적용하였으며, 기존의 유전자 알고리즘과 비교를 통하여 그 우수성을 입증하였다.

  • PDF