• Title/Summary/Keyword: 퍼지-신경회로망

Search Result 213, Processing Time 0.063 seconds

Autonomous Tractor Guidance Using Machine Vision and Fuzzy Control (기계 시각과 퍼지제어를 이용한 트랙터의 자율주행)

  • 조성인;최낙진;강인성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.150-158
    • /
    • 1999
  • 해외 농산물의 개방에 대비해 국내 농산물의 국제 경쟁력 강화를 위한 방안 마련이 시급한 때에 농산물의 품질 향상 및 생산비 절감을 위하여 다양한 분야에서 연구가 진행되고 있다. 그 중 농업기계분야의 연구는 현장에서의 애로점을 해결하려는 자동화 및 무인화, 첨단기술을 이용한 고능률화 및 지능화에 관한 연구가 활발히 진행중이며 요소 기술로는 각종 센서와 신경회로망, 퍼지이론 등 인공지능 기술이 응용되고 있다. (중략)

  • PDF

Identification of fuzzy rule and implementation of fuzzy controller using neural network (신경회로망을 이용한 퍼지 제어규칙의 추정 및 퍼지 제어기의 구현)

  • 전용성;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.856-860
    • /
    • 1991
  • This paper proposes a modified fuzzy controller using a neural network. This controller can automatically identify expert's control rules and tune membership functions utilizing expert's control data. Identificaton capability of the fuzzy controller is examined using simple numerical data. The results show that the network in this paper can identify nonlinear systems more precisely than conventional fuzzy controller using neural network.

  • PDF

Case Studies on the Automation of Manufacturing Processes Using Artificial Intelligence (AI기법을 응용한 생산공정 자동화 연구 사례)

  • 조형석
    • Journal of the KSME
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 1994
  • 퍼지이론은 1965년 Lefti Zadeh 교수에 의해 처음으로 제창되었으며 여러 분야에서 응용이 확 대되어 많은 좋은 성과를 얻고 있다. 그러나 전문가 시스템의 일종인 퍼지논리를 이용한 제어는 제어를 하고자 하는 시스템의 정성적인 특성에 대한 법칙의 추출이 어려운 문제로 남아 있다. 반면에 신경회로망을 이용한 제어는 스스로 지식을 축적할 수 있는 장점을 갖고 있으므로 최근에 많은 연구가 진행중에 있다. 특히 제어분야에서는 용접공정이나 조립공정 등의 공정제어와 로 봇제어의 분야에 이르기까지 응용분야가 확대되고 있다. 이 글에서는 이러한 인공지능 기법을 생산공정의 자동화에 적용한 사례 연구를 통해 이 기법의 유용함을 살펴보기로 한다.

  • PDF

The Study on Intelligent Cooling Load Forecast of Ice-storage System (빙축열 시스템의 지능형 냉방부하예측에 관한 연구)

  • Koh, Taek-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1539-1540
    • /
    • 2008
  • 운전자의 경험과 판단에 전적으로 의존하는 빙축열 시스템의 기존 운전방식에서는 운전자의 그릇된 판단과 미숙한 운전으로 인해 과잉 축열이나 냉방공급량 부족현상이 자주 초래된다. 본 논문에서는 경제적이고 효율적인 빙축열 시스템의 운용을 위해 다음날의 구간별 온도, 습도와 냉방부하를 예측하는 자기구성퍼지모델 구축방안을 제안한다. 제안된 방법의 성능과 실제 적용가능성을 검증학기 위하여 한국전력 속초 생활연수원을 대상으로 제안된 방법과 신경회로망, 퍼지모델, 선형회귀모델 등을 이용한 기존의 방법을 적용하여 구한 냉방부하, 온도, 습도의 예측정확도를 비교 분석한다.

  • PDF

Reliability Computation of Neuro-Fuzzy Models : A Comparative Study (뉴로-퍼지 모델의 신뢰도 계산 : 비교 연구)

  • 심현정;박래정;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2001
  • This paper reviews three methods to compute a pointwise confidence interval of neuro-fuzzy models and compares their estimation perfonnanee through simulations. The eOITl.putation methods under consideration include stacked generalization using cross-validation, predictive error bar in regressive models, and local reliability measure for the networks employing a local representation scheme. These methods implemented on the neuro-fuzzy models are applied to the problems of simple function approximation and chaotic time series prediction. The results of reliability estimation are compared both quantitatively and qualitatively.

  • PDF

Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator (유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural network learning algorithms. The proposed system learns membership functions for input variables using unsupervised competitive learning algorithm and output information using supervised outstar learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The control input to the process is determined by error, velocity and variation of error. Simulation and experiment results show a robustness of ACFAC compared with the PID control and neural network algorithms.

  • PDF

A Study on Mating Chamferless Parts by Integrating Fuzzy Set Tyeory and Neural Network (퍼지 및 신경회로망을 이용한 면취가 없는 부품의 자동결합작업에 관한 연구)

  • 박용길;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • This paper presents an intelligent robotic control method for chamferless parts mating by integrating fuzzy control and neural network. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly method alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as not only the limitation of the devices performing the assembly but also imperfect knowledge of the parts being assembled. To cope with these problems, an intelligent robotic assembly method is proposed, which is composed of fuzzy controller and learning mechanism based upon neural net. In this method, fuzzy controller copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly scheme so as to learn fuzzy rules from experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly scheme is evaluted through a series of experiments using SCARA robot. The results show that the proposed control method can be effectively applied to chamferless precision parts mating.

System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy (영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피)

  • 박인규;황상문;진달복
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

Optimization Method of Differential Evolution-based Radial Basis Function Neural Networks (차분 진화 알고리즘 기반 방사형 기저 함수 신경회로망 분류기의 최적화 방법)

  • Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1962-1963
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.

  • PDF