• 제목/요약/키워드: 퍼지-신경회로망

검색결과 213건 처리시간 0.03초

신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계 (The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network)

  • 김영식;이창구
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.830-836
    • /
    • 2006
  • 본 논문에서는 기존의 PID 제어기와 퍼지 제어기의 특성을 공통으로 갖는 새로운 형태의 신경회로망 기반 자동 동조 뉴로-퍼지 PID제어기를 제안하였다. 제안된 제어기는 퍼지의 선형성을 이용하여 퍼지 PID 제어기의 퍼지 연산부를 간략화 시키고 일반 PID 제어기와 유사한 입출력 특성을 갖도록 하였으며 비선형 성분 보상을 위하여 제어기 출력에 가장 큰 영향을 미치는 출력측 스케일 계수를 단일 신경 회로망 구조로 변경하고 PID 제어기 구조를 유지하게 하였다. 또한 단일 신경 회로망 구조를 이용함으로써 신경회로망의 초기 연결강도와 계산량에 대한 문제점을 해결하고 오차의 부호 정보에 따라 학습계수를 변화시키는 가변 학습계수 역전파 알고리즘을 사용하여 오버 슈트가 작으면서도 빠른 수렴 속도를 갖도록 하였다. 제안된 제어기를 비선형성이 강한 시스템으로 알려진 자기 부양(magnetic levitation) 시스템에 실제 적용하여 본 논문에서 제안한 제어기의 우수한 성능을 확인하였다.

  • PDF

다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류 (Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks)

  • 김길성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계 (Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor)

  • 구자일;김상훈
    • 전자공학회논문지 IE
    • /
    • 제47권3호
    • /
    • pp.26-34
    • /
    • 2010
  • 본 논문에서는 기본적인 형태는 퍼지 제어의 형태를 유지하면서 그 세부적 요소들을 신경회로망으로 구성한 뉴로-퍼지 제어기를 설계하였다. 뉴로-퍼지 제어기는 퍼지 제어 및 신경회로망 제어가 갖는 장단점을 서로 보완할 수 있도록 하였으며 On-Line상태에서 동조가 이루어지도록 하였다. 본 제어기의 성능을 평가하기 위해서 현재 로봇제어에서 많이 사용되고 있는 교류 서보 전동기의 속도제어에 적용시켰다. 가장 보편적인 제어기인 PID제어기 및 퍼지제어기와 비교실험 함으로써 제어기로서의 안정한 특성을 입증하였다. 특히 로봇처럼 급격한 부하변동에 대응할 수 있는 제어기 설계를 위해 부하를 인가하여 실험을 수행하여 성능을 입증하였다.

퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구 (A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network)

  • 홍대승;임화영
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.374-379
    • /
    • 2007
  • 본 논문은 전력계통의 배전계통시스템에서 FRTU(Feeder remote terminal unit)의 고장검출 알고리즘의 개선에 관한 연구이다. FRTU는 상과 지락에 관한 고장검출을 할 수 있다. 특히 고장픽업 기능과 돌입억제기능은 일반적인 부하전류로부터 고장전류를 구별할 수 있다. FRTU는 돌입전류 또는 설정값을 초과한 고장전류가 발생하면 고장표시기(FI)로 고장을 발생한다. 짧은 시간 푸리에 변환(STFT) 분석은 주파수와 시간에 관한 정보론 제공하고, 퍼지 중심 평균 클러스터링(FCM) 알고리즘은 고조파의 특성을 추출한다. 고장 검출기의 신경회로망 시스템은 최급강하법을 이용하여 고장상태로부터 돌입전류를 구별하도록 학습된다. 본 논문에서는 FCM과 신경회로망을 이용하여 고장검출기법을 개선하였다. 검증에 사용된 데이터는 22.9KV 배전계통 시스템에서 실제 측정된 데이터이다.

자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어 (Speed Control of Induction Motor Using Self-Learning Fuzzy Controller)

  • 박영민;김덕헌;김연충;김재문;원충연
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.173-183
    • /
    • 1998
  • 본 논문은 신경회로망에 의한 퍼지제어기의 소속함수를 자동동조하는 방법을 제시하였다. 신경회로망 에뮬레이터는 퍼지제어기의 소속함수와 퍼지규칙을 재구성하는 경로를 제공하며, 재구성된 퍼지제어기는 유도전동기의 속도제어를 위해 사용한다. 따라서, 연산 시간과 시스템 성능의 관점에서 제안된 방법은 전동기 상수가 변동될 시에도 기존의 제어 방식보다 우수하다. 공간전압벡터 PWM 발생을 위한 고속연산을 수행하고 자기학습형 퍼지제어기 알고리즘을 구현하기 위해서 32비트 마이크로프로세서인 DSP(TMS320C31)을 사용하였다. 컴퓨터 시뮬레이션과 실험 결과를 통하여, 제안된 방식이 PI 제어기나 기존의 퍼지제어기보다 향상된 제어 성능을 보일 수 있음을 확인하였다.

  • PDF

양자화 삼각 퍼지 함수를 이용한 FDNN 구현 및 성능 분석 (Implementation and Performance Analysis of FDNN Using Quantization Triangularity Fuzzy Function)

  • 변오성;이철희;문성용
    • 전자공학회논문지C
    • /
    • 제36C권11호
    • /
    • pp.84-91
    • /
    • 1999
  • 본 논문에서는 삼각함수와 양자화 된 삼각 퍼지함수를 가중퍼지평균(WFM: Weighted Fuzzy Mean)에 적용하여 비교하였다 또한 잡음의 특성에 따라서 영상에 포함된 잡음을 완전히 제거할 수 없는 단점을 개선하기 위하여, 계층적 구조의 결정기반 신경회로망(DBNN: Decision Based Neural Network)에 퍼지알고리즘을 적용하여서, 영상에 포함된 잡음을 제거하고 동시에 정보의 손실을 최소화하고 최적의 정보를 얻을 수 있는 고속 가중 퍼지결정 신경회로망(FDNN: fuzzy Decision Neural Network)을 구현하였다. 그리고 모의실험을 통하여 WFM과 FDNN의 성능을 비교하였으며, 보트(boats)의 영상에 대한 평균자승오차 (MSE:Mean Square Error)를 비교한 결과 제안된 FDNN이 우수함을 확인하였다.

  • PDF

ATM 트랙픽 제어기에서 신경망-퍼지 논리 제어를 이용한 지능형 모델링 기법 (Intelligent Modelling Techniques Using the Neuro-Fuzzy Logic Control in ATM Traffic Controller)

  • 이배호;김광희
    • 한국통신학회논문지
    • /
    • 제25권4B호
    • /
    • pp.683-691
    • /
    • 2000
  • 본 논문에서는 정확한 연결 설정을 결정하기 위해 Hopfield 신경회로망을 이용한 셀 다중화기와 역전파 신경회로망을 이용한 대역폭 예측기를 제안하였다. 다중화된 대역폭에서 망의 이용률을 극대화시키고 이용자 트랙픽의 QoS를 만족시키는 최소 대역폭이 새로 고안한 역전파 신경회로망 대역폭 예측기를 통하여 예측되어진다. 연결 수락 제어기는 예측된 대역폭과 망내의 사용 가능한 대역폭을 비교하여 연결 수락 여부를 판단한다. 연결이 설정된 사용자 소스를 감시하며 계약 위반시 적절한 조치를 취하는 퍼지 논리 제어 트래픽 감시 방법과 멀티미디어 트래픽의 주된 특성인 버스트 제어를 통한 망의 효율을 증가시키는 분석적 트래픽 형태 제어 방법을 제시한다. 제안된 트래픽 제어기는 성능이 우수하다고 평가된 기존의 제어기들과 성능 평가를 하였으며, 시뮬레이션 결과는 기존의 제어기보다 성능이 우수함을 보여주었다.

  • PDF

뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현 (An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image)

  • 이상구
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.472-479
    • /
    • 1999
  • 본 논문에서는 뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴분류기를 제안한다. 제안된 패턴 분류기는 일반적인 퍼지 인식기를 가지고 있는 3층 전방향 신경회로망 구조로 되어 있고 가중치들은 퍼지집합으로 구성된다. 이러한 퍼지-뉴로 패턴분류 시스템을 Visual C++ 환경을 구현한다. 성능평가를 위해 기존의 역전파 학습기능을 가진 신경회로망과 Maximum-likelihood 알고리즘을 이용해처리한 결과와비교분석한다. 대표적인 지표면 특징을 나타내는 8개의 클래스에 대해 훈련집합을 선정하고 각각의 분류 알고리즘에 같은 훈련집합을 사용하여 학습시킨 후 실험화상을 적용하여 지표면 특징을 8개의 클래스로 분류하였다. 실험결과 제안된 뉴로-퍼지 분류기는 여러개의 클래스로 혼합된 패턴에 대해서 기존의 분류기들에 비해 보다 더 좋은 성능을 보인다.

  • PDF

NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive using NFC and ANN)

  • 이정철;이홍균;정동화
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.282-289
    • /
    • 2005
  • 본 논문에서는 NFC(Neuro-Fuzzy Controller)와 ANN(Artificial Neural network) 제어기를 이용한 IPMSM의 속도 제어 및 추정을 제시한다. PI 제어기에서 나타나는 문제점을 해결하기 위하여 신경회로망과 퍼지제어를 혼합적용한 NFC를 설계한다. 신경회로망의 고도의 적응제어와 퍼지 제어기의 강인성 제어의 장점들을 접목한다. 다음은 ANN을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 IPMSM 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다.

강화 학습에 기반한 뉴로-퍼지 제어기 (Neuro-Fuzzy Controller Based on Reinforcement Learning)

  • 박영철;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.395-400
    • /
    • 2000
  • 본 논문에서는 강화학습에 기반한 새로운 뉴로-퍼지 제어기를 제안한다. 시스템은 개체의 행동을 결정하는 뉴로-퍼지 제어기와 그 행동을 평가하는 동적 귀환 신경회로망으로 구성된다. 뉴로-퍼지 제어기의 후건부 소속함수는 강화학습을 한다. 한편, 유전자 알고리즘을 통하여 진화하는 동적 귀환 신경회로망은 환경으로부터 받는 외부 강화신호와 로봇의 상태로부터 내부강화 신호를 만들어낸다. 이 출력(내부강화신호)은 뉴로-퍼지 제어기의 교사신호로 사용되어 제어기가 학습을 지속하도록 만든다. 제안한 시스템은 미지의 환경에서 제어기의 최적화 및 적응에 사용할 수 있다. 제안한 알고리즘은 컴퓨터 시뮬레이션 상에서 자율 이동로봇의 장애물 회피에 적용하여 그 유효성을 확인한다.

  • PDF