• Title/Summary/Keyword: 퍼지 PID 제어

Search Result 275, Processing Time 0.027 seconds

Fuzzy PID control System by Parallel PI and PD Control (PI와 PD의 병렬 구성에 의한 퍼지 PID제어 시스템)

  • Lee, Chul-Heu
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.43-48
    • /
    • 1993
  • In this paper, a new PID fuzzy controller (FC) is presented. The linguistic control rules of PID FC is separated into two parts : one is $e-{\Delta}e$ part, and the other is ${\Delta}^2e-{\Delta}e$ part. And then two FCs employing these rule base indivisually are synthesized. The control input to the process is decided by taking weighted mean of the outputs of two FCs. The proposed PID FC improve the transient response of the system and gives better performance than the conventional PI FC.

  • PDF

PID Control with Fuzzy Compensation for Electric Power Generation Unit (보상형 퍼지알고리즘을 이용한 전력발전기의 PID 제어)

  • Hak Roh, Lee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.217-220
    • /
    • 2004
  • Controller that is designed in this paper is form that apply PID controller about Fuzzy algorithm. Fuzzy Controller that using this paper is can speak that compensation style fuzzy controller as form to solidify action of PID controller for plant. This is not form that autotuning the each PID coefficient. We Apply and examined the response character to AGC(Automatic Generation Control) system using designed controller.

  • PDF

Fuzzy Controller Design for a Nano Precision Stage Driven by a PZT (PZT 구동 나노 정밀도 스테이지를 위한 퍼지 제어기 개발)

  • Ha, Ho-Jin;Jeong, Kyu-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.228-233
    • /
    • 2009
  • An ultra-precision stage is used in many industrial areas such as precision machine tools or semiconductor apparatus. These stages used to be driven by piezoelectric actuators in order to obtain ultra precision positioning resolution. Piezoelectric actuator can be moved fast in nanometer resolution. However, it has relatively large non-linear characteristics like hysteresis and creep curve. Although several kinds of control techniques have been developed, controller design method is still complicated. In this paper fuzzy control rules are developed intuitively. In order to verify the performance a series of experiments were conducted and the results were compared with those of the PID controller case.

An Auto-tuning of PID Controller using Fuzzy Criterion Function (퍼지 평가함수를 사용한 PID제어기의 자동 동조)

  • 류상욱;김봉재;정광조;정원용;이수흠
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.64-70
    • /
    • 1994
  • We propose a new method to deal with optimal auto-tuning of the PID controller which is used to process control in various fields. First of all, in this method, 1st order system which was modeled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nichols method. Finally, we can find the parameters of PID controller so as to maximize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. The Proposed method also shows good adaptability for variations in characteristics and dead m e of the system.

  • PDF

A Study on the Speed Control of Servo Motor using 3S Look-up Table (3S Look-up table을 이용한 서보전동기의 속도제어에 관한 연구)

  • 김동희;신위재
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1993
  • 본 논문은 3S Look-up table을 이용한 직류서보 전동기 시스템의 퍼지 PID제어의 한 기법을 제안한다. 이러한 제어기법은 재래식 조정기법인 ITAE table을 이용하여 제어기의 변수를 1차 조정한 다음 퍼지제어 행렬을 사용하여 작은 이득갑의 변화를 자동 결정함으로서 전동기 속도제어 시스템의 정상상태오차와 과도응답 특성을 향상 시킬 수 있었다. 또한 이러한 시스템은 마이크로프로세서를 이용함으로서 쉽게 실현할 수 있었다.

  • PDF

Fuzzy Controller Design for Active Vibration Isolation System Using Air-spring (공기스프링을 이용한 능동 방진 시스템의 퍼지 제어기 설계)

  • Yang, Xun;An, Chae-Hun;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.185-190
    • /
    • 2007
  • In recent days, vibration isolation system is mostly required in precise measurement and manufacturing system to reduce vibration due to external disturbances and internal actuators. Among all the vibration isolation systems, air spring is widely used because of its low resonant frequency and high damping ratio. In this study, we first analyze the passive air-spring system using leveling valve, and then design the active vibration isolation system. Because the non-linearity of pneumatic characteristics, we try to design the fuzzy controller which is better than PID controller at complex and non-linear system, and then compare them both in experiment and simulation.

  • PDF

Design of a Hybrid Fuzzy Controller for Speed Control of a Hydraulic Elevator Controlled by Inverters (유압식 인버터 엘리베이터의 속도제어를 위한 하이브리드 퍼지제어기의 설계)

  • Han, Gueon-Sang;Kim, Byoung-Hwa;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the elevator actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. To overcome the drawbacks, in this paper, we first try a hybrid controller which switches between a fuzzy logic controller and a PID controller. However, because the hybrid control scheme uses only a single type controller, except the switched layer, the high control performance can not be achieved. To solve this problem, we propose a new type fuzzy hybrid control scheme, which outputs of the output mixer arc controlled by a fuzzy logic. The hydraulic elevator system controlled by inverters has more then one switched layers due to the highly nonlinear characteristics. The proposed fuzzy hybrid control scheme achieves improved control performances by using both controllers with weighted outputs depend on the system status, to achieve improved control performances. The effectiveness of the proposed control scheme arc shown by simulation results, which the proposed fuzzy hybrid control method yields good control performance not only in the zero crossing speed region but also in the overall control region including steady-state region.

  • PDF

Implementation of Fuzzy Controller for MFC (MFC의 퍼지제어기 구현)

  • Lee, Seok-Ki;Lee, Yun-Jung;Lee, Seung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.648-654
    • /
    • 2004
  • The Mass Flow Controller(MFC) has become crucial in semiconductor manufacturing equipments. It is an important element because the quality and the yield of a semiconductor process are decided by the accurate flow control of gas. Therefore, the demand for implementing the high speed and the highly accurate control of MFCs has been increasing. It is hard to find an article of the control algorithm applied to MFCs. But, it is known that commercially available MFCs adopt PID control algorithms. Particularly, when the system detects the flow by way of heat transfer, the MFC control problem includes the slow response and the nonlinearity. In this paper, MFC control algorithm with a superior performance to the conventional PID algorithm is discussed and the superiority is demonstrated through the experiment. A fuzzy controller was utilized in order to compensate the nonlinearity and the slow response, and the performance is compared with that of an MFC currently available in the market. The control system, in this paper, consists of a personal computer, the data acquisition board and the control algorithm carried out by LabWindows/CVI program on the PC. In addition, a method of estimating the actual flow from the sensor output with the slow response is presented. In conclusion, according to the result of the experiment, the proposed algorithm shows better accuracy and is faster than the conventional controller.

Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Lee, Gong-Hee;Im, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.