• 제목/요약/키워드: 퍼지 C-Means Clustering

검색결과 146건 처리시간 0.023초

퍼지추론 방법에 의한 퍼지동정 (Fuzzy identification by means of fuzzy inference method)

  • 안태천;황형수;오성권;김현기;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.200-205
    • /
    • 1993
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.

  • PDF

Fuzzy C-Means클러스터링을 이용한 웹 로그 분석기법 (Web Log Analysis Technique using Fuzzy C-Means Clustering)

  • 김미라;곽미라;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.550-552
    • /
    • 2002
  • 플러스터링이란 주어진 데이터 집합의 패턴들을 비슷한 성실을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론으로, 지금가지 이를 위한 많은 알고리즘들이 개발되어 왔으며, 패턴인식, 영상 처리 등의 여러 공학 분야에 널리 적용되고 있다. FCM(Fuzzy C-Means) 알고리즘은 최소자승 기준함수(least square criterion function)에 퍼지이론을 적용만 목적함수의 반복최적화(iterative optimization)에 기반을 둔 방식으로, 하드 분할에 의한 기존의 클러스터링 방법이 승자(winner take all) 형태의 방법론을 취하는데 비하여, 각 패턴이 특정 클러스터에 속하는 소속정도를 줌으로써 보다 정확한 정보를 형성하도록 도와준다. 본 논문에서는 FCM 기법을 이용한 웹로그 분석을 하고자 한다.

  • PDF

패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘 (An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition)

  • 민지희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.102-107
    • /
    • 2009
  • Fuzzy C-Means(FCM)의 단점을 극복하기 위해 제안되었던 PCM은 잡음에는 강하지만 초기 파라미터 값에 민감하고, 상대적으로 가까이에 위치한 prototype들을 형성하는 패턴들의 경우에는 최종 prototype의 위치가 겹치는(동일한) 결과가 나올 수 있다는 단점이 있다. 이러한 PCM의 단점을 극복하기 위해 여러 방법이 제안되었지만, 본 논문에서는 PCM 알고리즘에 Interval Type 2 Fuzzy 접근 방법을 적용하여 PCM 알고리즘의 파라미터에 존재하는 uncertainty를 제어함으로써 성능을 향상시키는 방법을 제안한다.

FCM법에 의한 항만의 분류 및 그 특성 분석에 관한 연구 (A Study on the Classification of Ports and its Characteristics using Fuzzy C-Means)

  • 금종수;윤명오;양원재
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.143-154
    • /
    • 2000
  • In port management, the scale of facilities and port layouts are major factors characterizing the port, which influence port economics and productivities continuously through the port operation. Grouping ports in certain region by their characteristics could be used as the principal informations to establish national policy for port development or investment and also to analyze the competitiveness between ports. Currently Korean ports are divided into two groups such as the local port and the designated port containing foreign trade port and coastal port under the Korean port law. These divisions seem to be used for port administration as the matter of convenience but some qualitative grouping is needed for research of port problems. In this paper, 20 major Korean ports were clustered by the similar characteristics using Fuzzy C-Means and found to be classified 8 qualitative groups.

  • PDF

개선된 퍼지 클러스터링 (Improved Fuzzy Clusteirng)

  • 김승석;김성수;유정웅
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.6-11
    • /
    • 2005
  • 본 논문에서는 지능형 시스템의 초기 구조 및 파라미터 최적화에 필요한 개선된 성능의 퍼지 클러스터링 방법을 제안한다. 일반적인 클러스터링의 유용한 특성을 유지하면서 시스템의 구성을 적응적으로 변화시켜 전체 시스템의 학습과 성능을 개선할 수 있도록 하였다. 특히, 클러스터링 과정에서 발생하는 초기 파라미터 결정 문제와 최적화 문제를 동시에 만족하면서 일정한 구조로 수련하는 제안된 방법의 특성을 이용하여 지능형 모델에서 필요로 하는 조건이나 패턴의 구조를 자율적으로 추정하였다. 실험에서는 제안된 클러스터링 방법을 기존의 연구된 알고리즘과 비교하여 제안된 방법의 우수성을 보였다.

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator)

  • 김길성;최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection (Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping)

  • 노석범;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.646-650
    • /
    • 2014
  • 본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다.

퍼지 클러스터링 기법을 이용한 MPEG 비디오의 장면 전환 검출 (Shot Change Detection Using Fuzzy Clustering Method on MPEG Video Frames)

  • 임성재;김운;이배호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.159-162
    • /
    • 2000
  • In this paper, we propose an efficient method to detect shot changes in compressed MPEG video data by using reference features among video frames. The reference features among video frames imply the similarities among adjacent frames by prediction coded type of each frame. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. And the shot change detection algorithm is improved by using Fuzzy c-means (FCM) clustering algorithm. The FCM clustering algorithm uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.

  • PDF

철도차량을 위한 퍼지모델기반 최적 경제운전 패턴 개발 (Optimal Economical Running Patterns Based on Fuzzy Model)

  • 이태형;황희수
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.594-600
    • /
    • 2006
  • 본 논문은 전기철도차량의 운행시간 여유분을 고려하여 에너지 소비를 최소화하는 경제운전 패턴을 찾는 방안을 제시하였다. 경제최고속도와 타행끝점속도를 주행패턴의 변수로 사용하여 퍼지모델을 구축하고 이를 대상으로 진화 탐색을 적용하여 최적의 경제운전 패턴을 찾아낼 수 있으며, 사례연구를 통해 이를 입증하였다.