• 제목/요약/키워드: 퍼지 C-Means Clustering

검색결과 146건 처리시간 0.031초

퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구 (A Study on Labeling of ECG Signal using Fuzzy Clustering)

  • 공인욱;이정환;이상학;최석준;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

새로운 퍼지 군집화 알고리즘 (A New Fuzzy Clustering Algorithm)

  • 김재영;박동철;한지호;;송영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1905_1906
    • /
    • 2009
  • 본 논문은 데이터의 군집화를 효율적으로 수행하기 위하여 새로운 군집화 알고리즘을 제안한다. 제안되는 군집화 알고리즘은 Fuzzy C-Means (FCM)에 기반을 두는데, FCM 알고리즘은 모든 데이터에 대한 거리에 기본을 둔 멤버쉽을 기초로 하기 때문에 잡음에 약한 제약을 지니고 있었다. 이를 개선하기 위하여, 제안되었던 PCM(Probabilistic C-Means), FPCM(Fuzzy PCM), PFCM(Probabilistic FCM) 등 여러가지 알고리즘이 제안 되었다. 그러나 이들 알고리즘들은 초기 파라미터값 설정과 과다한 계산양에 따른 문제가 증가하였으며, 또한 잡음에 어느 정도 민감한 문제점을 지니고 있었다. 이 논문에서는 잡음에 대해 효과적으로 대응할 수 있는 새로운 군집화 알고리즘을 제안하고, 전통적인 군집화를 위한 Iris 데이터에 대한 실험을 통하여 효용성을 확인하였다.

  • PDF

볼록 군집 신경 회로망을 이용한 분류 (Classification Using Convex Clustering Neural Network)

  • 김영준;박용진
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.114-122
    • /
    • 2000
  • 본 논문에서는 기존의 Fuzzy C-Means, Nearest Neighborring Classification, FMMCNN, Fuzzy -ART등에서 사용하였던 정형에 근거한 분류에서 유기될 수 있던 판단 오류를 최소화하기 위해 단 한가지의 형태적 특징을 갖고 있는 정형에 의존하지 않고 분류를 수행하는 방법을 제안하고i파 한다. 이를 위해 본 논문에서는 주어진 학습 데이터로 학습하는 과정에서 볼록 다면체를 적응적으로 생성하고 다면체의 구조를 수정하는 퍼지 신경회로망을 설계하였다. 따라서, 본 방법은 순차적으로 입력되는 데이터를 분류하여 패턴 유형들을 생성하는 기능을 갖게된다. 본 방법의 유용성을 증명하기 위해, Hyperbox를 정형으로 하는 FMMCNN과의 다양한 시뮬레이션 비교를 수행하였다.

  • PDF

적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링 (on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks)

  • 오성권;박병준;박춘성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화 (The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization)

  • 김길성;박병준;오성권
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.970-976
    • /
    • 2007
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.

GA 기반 퍼지 제어기의 설계 및 트럭 후진제어 (A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control)

  • 곽근창;김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

HCM을 이용한 퍼지 모델의 On-Line 동정 (On-line Identification of fuzzy model using HCM algorithm)

  • 박호성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2929-2931
    • /
    • 1999
  • In this paper, an adaptive fuzzy inference and HCM(Hard C-Means) clustering method are used for on-line fuzzy modeling of nonlinear and complex system. Here HCM clustering method is utilized for determining the initial parameter of membership function of fuzzy premise rules and also avoiding overflow phenomenon during the identification of consequence parameters. To obtain the on-line model structure of fuzzy systems. we use the recursive least square method for the consequent parameter identification. And the proposed on-line identification algorithm is carried out and is evaluated for sewage treatment process system.

  • PDF

퍼지 클러스터링에 의한 기동표적의 기동패턴 분석 알고리즘 (Maneuvering pattern Analysis Algorithm for Maneuvering Target base on FCM)

  • 손현승;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1924-1925
    • /
    • 2011
  • 본 논문에서는 비선형 기동을 하는 기동표적의 추정된 잡음을 분석하여 표적의 기동패턴을 분석하는 알고리즘을 제시하고자 한다. 기동표적의 추정위치와 측정치에서 발생하는 잡음을 가속도와 순수 잡음으로 분리하고 분리된 성분을 분석하여 표적의 기동 패턴을 인식하고 동시에 추적을 실시하는 알고리즘을 구성한다. 잡음의 분리는 퍼지 클러스터링(FCM : Fuzzy C-means Clustering) 기법을 이용하여 적절한 추정값을 이용한다. 추정된 표적의 속도와 가속도, 잡음을 재 구성하여 기동표적의 기동패턴을 분석하고, 동시에 추적을 실시한다. 위의 과정을 통해 가속도를 분리한 후 비선형성을 지닌 기동표적의 기동패턴을 선형화 하여 칼만필터를 이용 잡음을 분리하고 가속도를 다시 보상하여 추적 알로리즘을 구성한다. 그리고 제안된 알고리즘의 수행 가능성을 보여 주기 위하여 몇 가지 예를 제시하였다.

  • PDF

무기본형 기초의 퍼지 클러스터링에 대한 빠른 접근 (Computational Vision and Fuzzy Systems Laboratory)

  • 황철;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.1-4
    • /
    • 2000
  • 본 논문에서는 패턴 데이터(pattern data) 의 분할(partitioning)위하여, 계산량의 단축할 수 있는 효과적인 퍼지 클러스터링 알고리즘(fuzzy clustering algorithm)을 제시한다. 본 논문에 제시된 알고리즘은 두 단계로 수행된다. 첫번째 단계는, 개선된 FCM(Fuzzy C-means)방법에 의해 입력 패턴틀에 대해, 단지 두 번의 반복 수행과정만을 거쳐, 충분히 많은 개수의 초기 클러스터 중 심(center)를 결정한다. 다음 단계에서는, 본 논문에 제시될 클러스터 합치기 알고리즘(cluster merging algorithm)을 통해 각 클러스터의 부피(volume)에 따라 클러스터들을 합치는 과정(merging process)을 하게 된다. 결과적으로 일정한 제한된 개수의 무정형(amorphous)의 클러스터틀의 효과적으로 표현될 수 있다. 본 논문의 마지막에 제시될 실험 결과들은 제시된 방법의 유용성을 보여줄 것이다.

  • PDF

FCM 클러스터링과 다변량 퍼지결정트리를 이용한 상황인식 보안 서비스 (Context-Aware Security Service using FCM Clustering and Multivariate Fuzzy Decision Tree)

  • 양석환;정목동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1527-1530
    • /
    • 2009
  • 유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.