• Title/Summary/Keyword: 퍼지 C-Means 클러스터링

Search Result 110, Processing Time 0.024 seconds

The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering (퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화)

  • Hong, Dong-Jin;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

Analysis of Gene Expression Data Using Gath-Geva Algorithm (Gath-Geva 알고리즘을 이용한 유전자 발현 데이터의 분석)

  • 박한샘;유시호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.253-255
    • /
    • 2004
  • 다량의 유전자 발현 정보를 담고 있는 DNA 마이크로어레이 기술의 발달로 인해 대량의 생물정보를 한번의 실험을 통해 분석할 수 있게 되었다. 유전자 발현 데이터를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 그룹별로 묶어서 그룹 레의 유전자들의 기능을 밝히거나 미지의 유전자를 분석하는데 이용되고 있다 본 논문에서는 유전자 발현 데이터를 클러스터링 하여 그로부터 유전 정보를 찾아내기 위한 방법으로 GG (Gath-Geva) 알고리즘을 제시한다. 퍼지 클러스터링 알고리즘중 하나인 GG 알고리즘은 대표적인 퍼지 클러스터링 방법인 퍼지 c-means 와 GK (Gustafson-Kessel) 알고리즘을 개선한 것으로. 차원이 크고 분포가 애매하여 클러스터링이 어려운 유전자 발현 데이터의 클러스터링에 적합한 알고리즘이다. 혈청(Serum) 유전자 데이터와 효모(Yeast) 세포주기 데이터를 CG 알고리즘 이용해 클러스터링 해 보고, 그 결과를 퍼지 c-means 알고리즘, GK알고리즘과 비교해 본 결과, GG 알고리즘이 유전자 발현 데이터의 클러스터링에 더 적합함을 확인하였다.

  • PDF

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Fuzzy RBF Network using FCM (FCM을 이용한 퍼지 RBF 네트워크)

  • 김재용;이상수;이준행;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.158-161
    • /
    • 2004
  • RBF 네트워크의 중간층은 클러스터링하는 층이다. 즉, 이 충의 목적은 주어진 자료 집합을 유사한 클러스터들(homogenous cluster)로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 .것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 적용한 퍼지 RBF 네트워크를 제안한다. 제안된 퍼지 RBF 네트워크의 학습은 크게 두 단계로 구분된다. 첫 번째 단계는 입력층과 중간층 사이에 퍼지 C-Means 알고리즘이 수행되고, 두 번째 단계는 중간층과 출력층 사이에 지도학습이 수행된다. 제안된 방법의 학습 성능을 평가하기 위하여 실제 주민등록증에서 추출한 숫자패턴에 적용한 결과, 기존의 RBF네트워크 보다 학습 성능이 개선된 것을 확인하였다.

  • PDF

Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering (퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석)

  • Yoo Si-Ho;Won Hong-Hee;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1591-1601
    • /
    • 2004
  • Clustering, a technique for the analysis of the genes, organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster or analyzing the functions of unknown gones. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assign a sample to a group. In this paper, a Bayesian validation method is proposed to evaluate the fuzzy partitions effectively. Bayesian validation method is a probability-based approach, selecting a fuzzy partition with the largest posterior probability given the dataset. At first, the proposed Bayesian validation method is compared to the 4 representative conventional fuzzy cluster validity measures in 4 well-known datasets where foray c-means algorithm is used. Then, we have analyzed the results of Saccharomyces cell cycle expression data evaluated by the proposed method.

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

A Study on Improving Performance of Supervised Classifier using ISODATA and Fuzzy C-Means Clustering Method (ISODATA와 퍼지 C-Means를 이용한 감독 분류의 성능 향상에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.79-81
    • /
    • 2003
  • 본 논문에서는 위성영상의 강독 분류에 대한 성능 개선을 위하여 ISODATA와 퍼지 C-Means 클러스터링 기법을 이용한 베이시안 최대우도 분류방법을 제안하였다. 본 연구에서는 ISODATA 클러스터링 기법을 이용하여 각각의 분류항목별로 분광특징에 따라 분석가가 선정한 훈련 데이터를 분할하여 새로운 훈련 데이터를 선정함으로써 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있도록 하였다. 그리고 새롭게 선정된 훈련 데이터를 이용하여 퍼지 C-Means 클러스터링을 수행하고 그 결과를 베이시안 최대우도 분류기법의 사전확률로 이용함으로써 위성영상의 감독 분류에 대한 성능을 개선할 수 있는 방법을 제안한다. 제안된 기법은 Landset TM 위성영상을 이용하여 그 적용성을 시험하였다.

  • PDF

Determination of the Count of Clusters and Image Segmentation using Modified Fuzzy c-Means Clustering Algorithm (영상의 클러스터 수 결정과 변형된 퍼지 c-Means 클러스터링을 이용한 영역 분할)

  • 윤후병;정성종;안동언
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.598-600
    • /
    • 2000
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역 분할이 필요하다. 통계적 모델을 이용한 영상의 영역 분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역 분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 클러스터링 알고리즘을 통한 영상의 영역 분할 시 노이즈 문제를 이웃한 픽셀들의 멤버쉽 값을 평균화함으로써 해결하는 방법을 제안하였다.

  • PDF