• 제목/요약/키워드: 퍼지 패턴 분류기

검색결과 50건 처리시간 0.022초

계층적 구조를 가진 퍼지 패턴 분류기 설계 (A Design of Fuzzy Classifier with Hierarchical Structure)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.355-359
    • /
    • 2014
  • 본 논문은 단순한 후반부 구조를 가진 퍼지 모델을 계층적 구조로 결합한 퍼지 패턴 분류기를 제안한다. 계층적 구조를 가진 퍼지 패턴 분류기의 기본 구조는 단순한 후반부 구조를 가진 퍼지 모델을 사용하여 전체 패턴 분류기의 구조적 복잡성을 높이지 않도록 설계 하였다. 입력공간을 계층적으로 분할하기 위하여 대표적인 퍼지 클러스터링 알고리즘인 Fuzzy C-Means clustering 기법을 이용하였다. 분할된 퍼지 입력 공간의 하위 구조를 분석하기 위하여 conditional Fuzzy C-Means 클러스터링 기법을 이용하였다. 계층적으로 분할된 퍼지 입력공간에 간단한 구조를 가진 퍼지 패턴 분류기를 적용하여 계층적 구조를 가진 패턴 분류기를 설계한다. 계층적으로 퍼지 모델들을 결합함으로써 입력 공간의 정보 분석을 거시적인 관점에서 시작하여 세부적으로 분석이 가능하게 되었다. 제안된 퍼지 패턴 분류기의 성능을 평가하기 위하여 다양한 기계 학습 데이터를 사용하였다.

얼굴인식을 위한 ELM 기반 퍼지 패턴분류기 (Extreme Learning Machine based Fuzzy Pattern Classifier for Face Recognition)

  • 오성권;노석범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1369-1370
    • /
    • 2015
  • 본 논문에서는 얼굴 인식을 위하여 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 지능형 알고리즘인 퍼지 집합 이론을 이용하여 주변 노이즈에 매우 강한 특성을 보이며 학습 속도가 매우 빠른 새로운 패턴 분류기를 제안한다. 제안된 퍼지 패턴 분류기는 기존 신경회로망의 학습 속도에 비해 매우 빠른 학습 속도를 보이며, 패턴 분류기의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 특성을 퍼지 집합 이론과 결합하여 퍼지 패턴 분류기의 일반화 성능을 개선하였다. 제안된 퍼지 패턴 분류기는 얼굴 인식 데이터를 이용하여 성능을 평가 하였다.

  • PDF

패턴분류를 위한 온톨로지 기반 퍼지 분류기 (Ontology-based Fuzzy Classifier for Pattern Classification)

  • 이인근;손창식;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.814-820
    • /
    • 2008
  • 최근, 패턴분류에 온톨로지를 이용하려는 연구가 다양한 분야에서 시도되고 있다. 그러나 대부분의 이러한 연구에서는 패턴분류 관련 지식을 표현한 온톨로지지가 패턴분류 과정에서 단순히 참조되는 수준에 머물고 있다. 본 논문에서는 퍼지 규칙기반 분류기를 확장한 온톨로지 기반 퍼지 분류기를 제안한다. 이를 위해 퍼지규칙 기반 패턴분류 방법을 개념화하여 온톨로지를 구성하고, 패턴분류를 위한 온톨로지 추론 규칙을 생성한다. 그리고 IRIS 데이터집합의 패턴분류 실험을 통해 온톨로지 기반 퍼지 분류기의 타당성을 보인다.

뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현 (An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image)

  • 이상구
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.472-479
    • /
    • 1999
  • 본 논문에서는 뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴분류기를 제안한다. 제안된 패턴 분류기는 일반적인 퍼지 인식기를 가지고 있는 3층 전방향 신경회로망 구조로 되어 있고 가중치들은 퍼지집합으로 구성된다. 이러한 퍼지-뉴로 패턴분류 시스템을 Visual C++ 환경을 구현한다. 성능평가를 위해 기존의 역전파 학습기능을 가진 신경회로망과 Maximum-likelihood 알고리즘을 이용해처리한 결과와비교분석한다. 대표적인 지표면 특징을 나타내는 8개의 클래스에 대해 훈련집합을 선정하고 각각의 분류 알고리즘에 같은 훈련집합을 사용하여 학습시킨 후 실험화상을 적용하여 지표면 특징을 8개의 클래스로 분류하였다. 실험결과 제안된 뉴로-퍼지 분류기는 여러개의 클래스로 혼합된 패턴에 대해서 기존의 분류기들에 비해 보다 더 좋은 성능을 보인다.

  • PDF

Extreme Learning Machine 기반 퍼지 패턴 분류기 설계 (Design of Fuzzy Pattern Classifier based on Extreme Learning Machine)

  • 안태천;노석범;황국연;왕계홍;김용수
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.509-514
    • /
    • 2015
  • 본 논문에서는 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 노이즈에 강한 특성을 보이는 퍼지 집합 이론을 이용한 새로운 패턴 분류기를 제안 한다. 기존 인공 신경망에 비해 학습속도가 매우 빠르며, 모델의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 학습 알고리즘을 퍼지 패턴 분류기에 적용하여 퍼지 패턴 분류기의 학습 속도와 패턴 분류 일반화 성능을 개선 한다. 제안된 퍼지패턴 분류기의 학습 속도와 일반화 성능을 평가하기 위하여, 다양한 머신 러닝 데이터 집합을 사용한다.

차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화 (The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.161-165
    • /
    • 2014
  • 본 논문에서는 입력 공간의 부분 영역의 특성을 기술하기 위하여 각 부분 영역을 대표하는 prototype을 정의하고 정의된 Prototype 에 가중치를 적용하여 각 부분 영역이 각 클래스의 경계면에 미치는 영향을 차등화 하는 Fuzzy Prototype 분류기를 제안 한다. 제안된 패턴 분류기의 Prototype은 퍼지 클러스터링 알고리즘인 Fuzzy C-Means Clustering 알고리즘을 사용하여 결정한다. 또한, 각 부분 영역의 가중치를 결정하기 위하여 유전자 알고리즘에서 파생된 차분 진화 알고리즘을 적용하여 각각의 퍼지 규칙의 가중치를 최적화 한다. 또한 퍼지 규칙 기반 시스템 기반 패턴 분류기의 경우 각각의 퍼지 규칙의 후반부 구조인 다항식의 계수를 추정하기 위하여 Linear Discriminant Analysis를 사용한다. 마지막으로, 본 논문에서 제안한 패턴 분류기의 패턴 분류 특성 및 성능을 평가하기위하여 기계 학습 데이터를 사용한다.

퍼지 가중치 평균 분류기를 위한 통계적 정보 기반의 가중치 설정 방안 (Weight Adjustment Methods Based on Statistical Information for Fuzzy Weighted Mean Classifiers)

  • 신상호;조재현;우영운
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.25-30
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식이나 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection (Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping)

  • 노석범;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.646-650
    • /
    • 2014
  • 본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다.

결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할 (Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules)

  • 김봉근;최형일
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.28-43
    • /
    • 1995
  • 본 논문에서는 패턴분류기를 위해 효과적인 퍼지규칙을 자동으로 생성하기 위한 새로운 방법을 제안한다. 퍼지 규칙은 특징공간에 대해 가상구체를 재귀적으로 정의함으로써 추출되고, 가상구체는 패턴 클래스의 중심벡터와 클래스에 속하는 모든 패턴을 충분히 포함할 수 있는 경계거리로 정의된다. 특히 공간을 분할하기 위해 가상구체를 이용하는 방법은 기존에 많이 사용되고 있는 가상사각형 형태의 분할 방법에 비해 클래스의 형태를 효과적으로 표현할 수 있으므로 패턴 분류기의 정화성을 향상시킬 수 있고, 퍼지규칙의 전제부를 매우 간단하게 표현할 수 있을 뿐만 아니라 제귀적 가상구체의 정의를 통해 추출되는 퍼지규칙들이 계층적인 구조를 갖을 수 있게 함으로써 입력되는 패턴의 신속한 분류를 가능하게 한다. 본 논문에서는 제안된 방법을 기존의 가상사각형을 이용한 퍼지규칙 추출 방법과 비교한다.

  • PDF

퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법 (Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier)

  • 신상호;한수환;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF