• 제목/요약/키워드: 퍼지 집합

검색결과 415건 처리시간 0.023초

퍼지연상기억장치에 기반한 협력 추천 방법 (A Collaborative Recommendation Method based on Fuzzy Associative Memory)

  • 이동섭;고일주;김계영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1054-1061
    • /
    • 2004
  • 최근 인터넷의 발전으로 정보의 접근이 용이할 뿐 아니라 그 양 또한 기하급수적으로 증가하고 있다. 정보의 홍수 속에서 원하는 정보만을 자동으로 추출할 수 있는 기술은 정보검색에 소요되는 시간과 노력을 절약할 수 있는 매우 중요한 연구이다. 본 논문에서는 관심 범위가 유사한 사용자에게 양질의 정보를 자동으로 추천하기 위하여 협력적 여과방법에 관하여 제안한다. 제안하는 방법의 기본적인 배경은 사용자는 선택항목의 선호도를 입력하고, 여과 장치는 이 선호도에 근거하여 추천집합을 자동으로 생성하는 것이다. 선호도로부터 추천집합을 추론하기 위하여 본 논문에서 퍼지 연상기억장치에 기반한 방법을 제안한다. 제안된 방법은 웹 서버상에서 기술문서 특히, 정보기술문서를 검색하는 분야에 대하여 구현하였으며 그 결과를 보인다.

퍼지 집합 이론을 활용한 무선인지 주파수 할당 알고리즘 (A Frequency Allocation Method for Cognitive Radio Using the Fuzzy Set Theory)

  • 이문호;이종찬
    • 한국통신학회논문지
    • /
    • 제33권9B호
    • /
    • pp.745-750
    • /
    • 2008
  • 무선인지 기반의 시스템에서, 주 사용자를 위한 주파수 할당을 보장하면서도 부가 사용자에게도 끊김없는 서비스를 제공해야 한다. 부가 사용자의 멀티미디어 데이터의 전송 시 무선 링크의 빈번한 변경 때문으로 인한 데이터 전송 지연과 손실이 발생할 경우 QoS 저하를 피할 수 없게 된다. 부가 사용자에게도 끊김없는 서비스를 유지하기 위해서는 효율적인 주파수 자원 관리가 필요하다. 본 논문에서는 퍼지 다기준 의사 결정 방법에 근거한 주파수 선정 방법을 제안한다. 제안되는 주파수선정 방법은 퍼지 집합 이론을 활용하며 주파수 선택을 위한 결정 프로세스에 기존의 전파 수신 감도 이외에 셀 부하, 데이터 전송률, 가용 대역 등을 고려한다. 시뮬레이션을 통하여, 제안된 방법이 수신 신호 세기만을 사용하는 기존의 방법보다 우수함을 보인다.

퍼지추론을 이용한 소수 문서의 대표 키워드 추출 (Representative Keyword Extraction from Few Documents through Fuzzy Inference)

  • 노순억;김병만;허남철
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.837-843
    • /
    • 2001
  • 본 논문은 사용자의 관심 내용을 포함하는 소수 문서들로부터 대표 용어들을 추출하고 가중치를 부여하는 새로운 방법을 제시한다. 대표 용어들의 추출 방법에서는 우선 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 초기 대표 용어들을 선택한 수 예제 문서 내에서의 이들 용어들과 후보 용어들의 발생 빈도의 유사성을 이용하여 가중치를 재산정하고 대표 용어들을 자동 확장하였다. 제안 방법의 성능은 초기 대표 용어들을 선책하는 방법에 의해 영향을 크게 받는다. 따라서 문서집합에서 대표 용어를 추출하는 문제는 불확실성을 내포하고 있으므로 이러한 문제 해결에 효과적인 퍼지 추론을 초기 대표 용어의 선택 방법에 적용하였다. 본 논문에서 다루는 문제는 문서 집합의 중심 벡터를 계산하는 것으로 볼 수가 있다. 성능 평가를 위해 기존의 대표적인 Rocchio 알고리즘과 Widrow-Hoff 알고리즘과의 문서 분류 실험을 하였다. 실험 결과 우수한 성능을 보여줌으로서 제안 방법의 유용성을 확인 할 수 있었다.

  • PDF

경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘 (Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically)

  • 신광철;한상용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1072-1079
    • /
    • 2003
  • 본 논문은 점층적으로 대규모 문서 분류를 할 수 있는 새로운 클러스터링 알고리즘에 대한 것으로, 고차원의 대규모 문서 집합에 대한 클러스터링을 수행하는 spherical k-means (SKM) 알고리즘과 점층적인 방식으로 클러스터링을 수행하는 퍼지(fuzzy) ART(adaptive resonance theory) 신경망의 특징을 이용하였다. 즉, SKM의 벡터 공간 모델과 개념벡터를 토대로 퍼지 ART의 경계변수의 개념을 결합한 것이다. 제시하는 알고리즘은 점층적 클러스터링의 지원과 함께 최적의 클러스터 수를 자동으로 결정할 뿐 아니라 이상치(outlier)와 노이즈(noise)에 의한 overfitting의 문제도 해결하였다. 또한 생성된 클러스터들의 질을 평가할 수 있는 응집도를 측정하는 목적 함수의 값에 있어서도 CLASSIC3 데이타 집합으로 실험한 결과 기존의 SKM에 비해 평균 8.04%의 향상된 응집도를 나타냈다.

퍼지 성능 측정자를 결합한 최적 클러스터 분석방법 (An Optimal Cluster Analysis Method with Fuzzy Performance Measures)

  • 이현숙;오경환
    • 한국지능시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.81-88
    • /
    • 1996
  • 클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.

  • PDF

2단계 유사관계 행렬을 기반으로 한 순위 재조정 검색 모델 (A Re-Ranking Retrieval Model based on Two-Level Similarity Relation Matrices)

  • 이기영;은희주;김용성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1519-1533
    • /
    • 2004
  • 웹 기반의 학술분야 전문 검색 시스템은 사용자의 정보 요구 표현을 극히 제한적으로 허용함으로써 검색된 정보의 내용 분석과 정보 습득의 과정이 일관되지 못해 무분별한 정보 제공이 이루어진다. 본 논문에서는 용어의 상대적인 중요 정도를 축소용어 집합으로 구성하여 검색 시스템의 높은 시간 복잡도를 해결할 수 있도록 퍼지 검색 모델을 적용하였다. 또한 퍼지 호환관계의 특성을 만족하는 유사관계 행렬을 통해 사용자 질의를 정확하게 반영할 수 있도록 클러스터 검색을 수행하였다. 본 논문에서 제안한 퍼지 검색과 문서 클러스터 검색의 유사도 결합을 통한 순위 재조정 검색 모델은 검색 성능을 표현하는 정확률과 재현율 척도에서 향상됨을 입증하였다.

다기능 레이더의 추적 성능 개선을 위한 퍼지 추론 시스템 기반 임무 우선 순위 선정 기법 연구 (A Study of Fuzzy Inference System Based Task Prioritizations for the Improvement of Tracking Performance in Multi-Function Radar)

  • 김현주;박준영;김동환;김선주
    • 한국전자파학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-206
    • /
    • 2013
  • 본 논문에서는 다기능 레이더의 추적 성능 개선을 위해 임무 우선 순위 선정을 위한 퍼지 추론 시스템 기반의 기법을 제안하였다. 제안한 기법은 추적 임무 수행 시 우선 순위 결정 트리를 구성하고, 퍼지 집합으로 추적 안정도, 위협도, 접근성을 선정하고, 퍼지 규칙을 통한 추적 임무의 우선 순위를 얻는 방식이다. 우선 순위를 높게 책정할 경우, 추적 주기를 변화시켜 추적의 정확도를 높일 수 있도록 설계하였다. 추적 성능 개선 효과를 입증하기 위해 기동 특성이 뚜렷한 표적 궤적을 생성하고, 제안된 기법을 적용한 경우와 적용하지 않은 경우를 시뮬레이션으로 비교 분석하였다.

지능적 정보처리를 위한 퍼지추론기관의 구축 (Development of Fuzzy Inference Mechanism for Intelligent Data and Information Processing)

  • 송영배
    • Spatial Information Research
    • /
    • 제7권2호
    • /
    • pp.191-207
    • /
    • 1999
  • 공간과 관련된 의사결정문제 해결에 필요한 취득가능한 자료나 정보는 불완전하거나 부정확하며, 많은 부분 자연산어(natural language)로 기술되어 있다. 이 같은 정보들을 컴퓨터를 이용하여 처리하기 위해서는 결국 컴퓨터로 하여금 인간이 사용하는 자연어를 이해할 수 있도록 애매한 특성의 언어값(Linguistic value)을 정량적으로 기술할 필요가 있다. 이를 위해 퍼지집합(fuzzy set) 이론을 퍼지논리(fuzzy logic)가 대표적인 방법론으로 이용되고 있다. 본 논문에서는 부정확하거나 불명확한 자료 및 정보를 기반으로 의사결정문제를 지능적으로 처리하기위해 사용자가 가장 이해하기 쉬운 자연어로 『언어모델』을 구축하고, 평가사안이나 의사결정문제가 불명확하게 서술될 경우 컴퓨터를 이용한 구조화 및 추론을 통한 문제해결이 가능하도록 퍼지추론기관구축을 위한 일련의 논리적 개념과 구축과정을 연구하였다.

  • PDF

퍼지 로직을 이용한 해상에서의 다중 선박 또는 장애물 충돌 위험도 분석 (Risk Analysis for Collision of Multiple Vessels or Obstacles using Fuzzy Logic in Maritime)

  • 이한울;조홍래;박장식;김현태;유윤식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.487-488
    • /
    • 2011
  • 해상 물동량의 증가와 해양레저의 활성화로 국내 연안의 해양사고 위험은 더욱 증가하고 있다. 본 논문은 해상에서 이동하는 소형 선박을 기준으로 근접하는 여러 선박 또는 장애물에 대한 퍼지 로직을 이용한 충돌 위험도를 분석하는 방법을 제시하였다. 퍼지 집합으로는 탑승한 배의 속도, 반경 1km 이내 장애물 개수, 진행방향 좌우 $15^{\circ}$ 이내의 장애물 개수를 고려 대상으로 하였다.

  • PDF

퍼지신경망을 이용한 기업부도예측 (Bankruptcy Prediction using Fuzzy Neural Networks)

  • 김경재;한인구
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.135-147
    • /
    • 2001
  • 본 연구에서는 퍼지신경망을 이용한 기업부실예측모형을 제안한다. 신경망은 탁월한 학습능력을 가진 것으로 알려져 있으나, 잡음이 심한 재무자료에 대해서는 종종 일관되지 못하고 기대에 미치지 못하는 예측성과를 보인다. 이는 연속형의 형태를 지닌 독립변수와 과다한 양의 원자료로부터 예측에 필요한 일정한 패턴을 찾기가 어렵기 때문이다. 이러한 문제점은 예측모형에서의 독립변수와 종속변수간의 인과관계를 신경망이 용이하게 찾아낼 수 있도록 독립변수의 형태를 변환함으로써 해결한 수 있다. 이러한 해결방법의 하나는 기존 신경망에 퍼지집합의 개념을 적용하여 신경망 학습에 사용될 자료를 퍼지화하고 이를 신경망에 학습시키는 것이다 입력자료를 퍼지화 함으로써 정보의 손실 없이도 신경망이 자료 내의 복잡한 관계를 용이하게 학습하는 것이 가능하다. 본 연구에서 제안된 퍼지신경망을 기업부도예측에 적용한 결과, 퍼지신경망이 기존의 신경망보다 우월한 예측성과를 나타내었다.

  • PDF