• Title/Summary/Keyword: 퍼지 중심

Search Result 303, Processing Time 0.021 seconds

Optimal Identification of Data Granules-based Genetically Optimized Fuzzy Relation Polynomial Neural Networks (데이터 입자 기반 유전론적 퍼지 관계 다항식 뉴럴네트워크의 최적 동정)

  • Lee In-Tae;Lee Young-Il;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • 본 논문에서는 정보 입자화와 유전자 알고리즘을 기반으로 최적 퍼지 다항식 뉴럴네트워크를 제안하고, 유전자 알고리즘을 사용하여 종합적인 설계방법을 개발한다. 제안된 모델은 기존의 진화론적 퍼지 다항식 뉴럴네트워크의 구조를 정보입자화를 통해 좀 더 빠르게 최적의 해공간에 접근시키는데 그 목적이 있다. 퍼지 관계기반 다항식 뉴럴네트워크는 퍼지 다항식 뉴론이 기초가 되어 가능한 구조적이고 요소적으로 모델의 성능을 향상 시켜준다. 퍼지 다항식 뉴런의 최적 구조를 위해 유전자 알고리즘을 이용하여 입력변수의 수와 후반부 다항식의 차수 입력변수 수에 따른 입력변수 그리고 멤버쉽 함수의 수를 동조한다. 여기서, 클러스터링의 하나의 방법인 HCM에 의해 퍼지 규칙 각각의 전반부와 후반부에 데이터 중심값을 이용하여 다항식함수의 파라미터값을 결정한다. 제안된 유전론적 퍼지 관계 다항식 뉴럴네트워크의 성능평가는 기존 퍼지 모델링에서 이용된 표준 데이터를 활용하여 평가한다.

  • PDF

Optimal Identification of Data Granules-based Fuzzy Set Fuzzy Model (데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정)

  • Park Keon-Jun;Kim Wan-Su;Oh Sung-Kwun;Kim Hyun-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.317-320
    • /
    • 2005
  • 본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.

  • PDF

A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구)

  • Jang, Cheol-Su;Choe, Jeong-Won;O, Yeong-Seok;Chae, Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.395-407
    • /
    • 2006
  • 본 논문에서는 설계변수와 제어기 이득의 자기 동조를 사용하는 PI+D 제어기 설계에 대하여 기술한다. 사용된 퍼지 PI+D 제어기는 일반적인 연속 시간 선형 PI+D 제어기를 근사화하여 사용하였고, 퍼지화는 퍼지싱글톤으로, 비퍼지화는 간략화된 무게중심법을 사용하였다. 제안된 제어기는 제어대상이 비선형일 때 자기 동조 성능이 개선된다. 퍼지 PI+D 제어기가 적용되면, 퍼지추정 결과는 분리된 퍼지 변수로서 다른 작용 성분으로 계산되고, 그 결과는 설계변수에 해당하는 함수의 형태로 결정되어 제어이득을 결정한다. 따라서 제안된 방법은 빠른 속도 추정의 성능을 가지며, 퍼지 입력변수의 증가에도 쉽게 적용될 수 있고, 재생 오차를 줄이는 이점을 가진다. 이 제어기는 설계변수와 제어기 이득의 사용으로 보다 높은 효율성과 개선점을 가지고 있다.

  • PDF

Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm (개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • Han, Jin-Woo;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.

Systematic Design Method of Fuzzy Logic Controllers by Using Fuzzy Control Cell (퍼지제어 셀을 이용한 퍼지논리제어기의 조직적인 설계방법)

  • 남세규;김종식;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1234-1243
    • /
    • 1992
  • A systematic procedure to design fuzzy PID controllers is developed in this paper. The concept of local fuzzy control cell is proposed by introducing both an adequate global control rule and membership functions to simplify a fuzzy logic controller. Fuzzy decision is made by using algebraic product and parallel firing arithematic mean, and a defuzzification strategy is adopted for improving the computational efficiency based on nonfuzzy micro-processor. A direct method, transforming the typical output of quasi-linear fuzzy operator to the digital compensator of PID form, is also proposed. Finally, the proposed algorithm is applied to an DC-servo motor. It is found that this algorithm is systematic and robust through computer simulations and implementation of controller using Intel 8097 micro-processor.

A Study on Incident Detection Model using Fuzzy Logic and Traffic Pattern (퍼지논리와 교통패턴을 이용한 유고검지 모형에 관한 연구)

  • Hong, Nam-Kwan;Choi, Jin-Woo;Yang, Young-Kyu
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2007
  • In this paper we proposed and implemented an incident detection model which combines fuzzy algorithm and traffic pattern in order to enhance the efficiency of incident detection for the highways with lamps. Most of the existing algorithms dealt with highways without lamps and can not be used for detecting incidents in the highways with lamps. The data used for model building are traffic volume, occupancy, and speed data. They have been collected by a loop sensor at 5 minutes interval at a point in the Internal Circular Highway of Seoul for the period of 3 months. In this model, the three parameters collected by sensor were fuzzified and combined with the daily traffic pattern of the link. The test of efficiency of the propsed model was performed by comparing the result of proposed model with traditional APID algorithm and fuzzy algorithm without the pattern data respectively. The result showed significant amount of improvement in reducing the false incident detection rate by 18%.

  • PDF

Fuzzy Linear Regression Using Distribution Free Method (분포무관추정량을 이용한 퍼지회귀모형)

  • Yoon, Jin-Hee;Choi, Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.781-790
    • /
    • 2009
  • This paper deals with a rank transformation method and a Theil's method based on an ${\alpha}$-level set of a fuzzy number to construct a fuzzy linear regression model. The rank transformation method is a simple procedure where the data are merely replaced with their corresponding ranks, and the Theil's method uses the median of all estimates of the parameter calculated from selected pairs of observations. We also consider two numerical examples to evaluate effectiveness of the fuzzy regression model using the proposed method and of another fuzzy regression model using the least square method.

Hierarchical Fuzzy System with only system variables for IF-part (조건부에 시스템 입력만을 사용하는 계층 퍼지 시스템)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents a class of hierarchical fuzzy systems where previous layer outputs are used not in IF-parts, but only in THEN -parts of the fuzzy rules of the current layer. The existence of the proposed hierarchical fuzzy system which approximates a given real continuous function on a compact set is proven if complete fuzzy sets are used in the IF-parts of the fuzzy rules with singleton fuzzifier and center average defuzzifier.

Design and Analysis of Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 Interval Type-2 TSK Fuzzy Logic System의 설계 및 해석)

  • Kim, Dae-Bok;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문에서는 Interval Type-2 TSK 퍼지 논리 시스템을 설계하고 기존의 Type-1 TSK 퍼지 논리 시스템과 비교 분석한다. Type-1 TSK 퍼지 논리 시스템과 Interval Type-2 TSK 퍼지 논리 시스템을 비교하기 위해 노이즈에 영향을 받은 목적 데이터를 사용한다. 유전자 알고리즘을 사용하여 전반부의 중심값의 학습률과 후반부 계수값의 학습률을 결정한다.

  • PDF